Skip to main content
Log in

Effect of additional carbon source and moisture level on xylanase production by Cochliobolus sativus in solid fermentation

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The fungus Cochliobolus sativus has been shown to be an efficient producer of xylanase from an industrial point of view. The addition of extra carbon sources and the initial moisture content of the solid-state fermentation were found to have a marked influence on the xylanase production by C. sativus Cs6 strain. Xylan and starch resulted in an increased xylanase production (1469.4 and 1396.56 U/g, respectively) after 8 days of incubation. Optimal initial moisture content for xylanase production was 80%. The cultivation systems can easily be modified to enhance the productivity of the enzyme formation by C. sativus Cs6, which will facilitate the scale up processes for mass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchert, J.M., Tenkanen, A., and Kantelinen, L., Application of Xylanase in the Pulp and Paper Industry, Bioresource Tech. 1994, vol. 50, pp. 65–72.

    Article  CAS  Google Scholar 

  2. Wong, K.K.Y., James, C.S., and Campion, S.H., Xylanase Pre and Post-Treatments of Bleached Pulps Decrease Absorption Coefficient. J. Pulp Pap. Sci., 2000, vol. 26, pp. 377–383.

    CAS  Google Scholar 

  3. Medeiros, R.G., Sozzner, M.L., Thome, J.A., Cacais, A.O., Estelles, R.S., Sales, B.C., Ferreirol, H.M., Lucena, N.S.A., Silva, J.F.G., and Filho, E.X., The Production of Hemicellulases by Aerobic Fungi on Medium Containing Residues of Banana Plant as Substrate, Biotechnol. Prog., 2000, vol. 16, pp. 522–524.

    Article  PubMed  CAS  Google Scholar 

  4. Singh, S., Pillay, B., and Prio, B.A.R., Thermal Stability of β-Xylanase Produced by Different Thermomyces lanuginosus Strains, Enzyme Microb. Technol., 2003, vol. 26, pp. 502–208.

    Article  Google Scholar 

  5. Peltonen, S., Comparison of Xylanase Production by Fungal Pathogens of Barley with Special Reference to Bipolaris sorokiniana. Mycol. Res., 1995, vol. 6, pp. 717–723.

    Article  Google Scholar 

  6. Emami, K. and Hack, E., Conservation of XYN11A and XYN11B Xylanase Genes in Bipolaris sorghicola, Cochliobolus sativus, Cochliobolus heterostrophus, and Cochliobolus spicifer, Curr. Microbiol., 2002, vol. 45, pp. 303–306.

    Article  PubMed  CAS  Google Scholar 

  7. Weiland, P., Principles of Solid State Fermentation, in Treatment of Lignocellulosics with White Rot Fungi, Zadrazil, F. and Reiniger, P., Eds., London: Elsevier, 1988, pp. 64–76.

    Google Scholar 

  8. Haltrich, D., Nidetzky, B., Kulbe, K.D., Steiner, W., and Zupaneie S., Production of Fungal Xylanases, Biores. Technol., 1996, vol. 58, pp. 137–161.

    Article  CAS  Google Scholar 

  9. Poorna, C.A. and Prema, P., Production of Cellulose-Free Endoxylanase from Novel Alkalophilic Thermotolerent Bacillus pumilus by Solid-State Fermentation and Its Application in Waste Paper Recycling, Bioresour Technol., 2007, vol. 98, pp. 485–490.

    Article  Google Scholar 

  10. Pandey, A., Solid State Fermentation: an Overview, in Solid State Fermentation, Ashok Pandey, New Deli: Wiley Eastern, 1994.

    Google Scholar 

  11. Abdel-Star, M.A. and El-Said, A.H.M., Xylan-Decomposing Fungi and Xylanolytic Activity in Agricultural and Industrial Wastes, Inter. Biodeterior. Biodegrad., 2001, vol. 47, pp. 15–21.

    Article  Google Scholar 

  12. Bakri, Y., Jawhar, M., and Arabi, M.I.E., Improvement of Xylanase Production by Cochliobolus sativus in Solid Sate Fermentation. Brazil. J. Microbiol., 2008, vol. 39, pp. 602–604.

    Article  Google Scholar 

  13. Arabi, M.I.E. and Jawhar, M., Molecular and Pathogenic Variation Identified among isolates of Cochliobolus sativus. Aust. Plant Pathol., 2007, vol. 36, pp. 17–21.

    Article  CAS  Google Scholar 

  14. Bailey, M.J., Baily P., and Poutanen, R., Interlaboratory Testing of Methods for Assay of Xylanase Activity. J. Biotechnol., 1992, vol. 23, 257–270.

    Article  CAS  Google Scholar 

  15. Miller, G.L., Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugars. Ann. Chem., 1959, vol. 31, pp. 426–428.

    Article  CAS  Google Scholar 

  16. Anonymous, STAT-ITCF, Programme, MICROSTA, Realized by ECOSOFT, 2nd Ver., Institut Technique des Cereals et des Fourrages Paris, France. 1988.

  17. Desgranges, C. and Durand, A., Effect of pCO2 on Growth, Condition and Enzyme Production in Solid State Culture of Aspergillus niger and Trichoderma viride TS, Enz. Microb.Technol., 1990, vol. 12, pp. 546–551.

    Article  CAS  Google Scholar 

  18. MacCabe, A.P., Afernández-Espinar, M.T., De-Graaff, L.H., Visser, J. and Ramón, D. Identification, Isolation and Sequence of the Aspergillus nidulans xlnC Gene Encoding the 34-kDa Xylanase, Gene, 1996, vol. 175, pp. 29–33.

    Article  PubMed  CAS  Google Scholar 

  19. Ramesh, M.V. and Lonsane, B.K., Characteristics and Novel Features of Thermostable Alpha-Amylase Produced by Bacillus licheniformis M27 under Solid-State Fermentation, Starch/Starke, 1990, vol. 6, pp. 233–238.

    Article  Google Scholar 

  20. Guimaraes, L.H.S., Nogueira, P.S., Michelin, M., Rizzatti, A.C.S., Sandrim, V.C., Zanoela, F.F., Aquino, A.C.M.M., Junior, A.B., and Polizeli, M.L.T.M., Screening of Filamentous Fungi for Production of Enzymes of Biotechnological Interest, Brazil. J. Microbiol., 2006, vol. 37, pp. 474–480.

    Article  CAS  Google Scholar 

  21. Kuhad, R.C., Manchanda, M., and Singh, A., Optimization of Xylanase Production by a Hyperxylanolytic Mutant strain of Fusarium oxysporum, Process Biochem., 1998, vol. 33, pp. 641–647.

    Article  CAS  Google Scholar 

  22. Sanchez, V.E. and Pilosof, A.M.R., Protease-Conidia Relationships of Aspergillus niger Grown in Solid State Fermentation, Biotech. Lett., 2000, vol. 22, pp. 1629–1633.

    Article  CAS  Google Scholar 

  23. Couri, S., Tersi, S.C., Pinto, G.S., Freitas, S.P., and Costa, A.C.A., Hydrolytic Enzume Production in Solid State Fermentation by Aspergillus niger 3T5B8, Process Biochem., 2000, vol. 36, pp. 255–261.

    Article  CAS  Google Scholar 

  24. Kheng, P.P. and Omar, I.C., Xylomase Production by a Local Fungal Isolate, Aspergillus niger USM AI1 via Solid State Fermentation Using Palm Kernal Cake (PKC) as Substrata, Songklanakarin J. Sci. Technol., 2005, vol. 17, pp. 325–336.

    Google Scholar 

  25. Dubeau, H., Chahal, D.S., and Ishaque, M., Production of Xylanases by Chaetomium cellulolyticum during Growth on Lignocelluloses, Biotechnol. Lett., 1986, vol. 8, pp. 445–448.

    Article  CAS  Google Scholar 

  26. Considine, P.J., Buckley, R.J., Griffin, T.O., Tuohy, M.G., and Coughlan, M.P., A Simple and Inexpensive Method of Solid State Cultivation, Biotechnol. Techniques, 1989, vol. 3, pp. 89–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. E. Arabi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arabi, M.I.E., Jawhar, M. & Bakri, Y. Effect of additional carbon source and moisture level on xylanase production by Cochliobolus sativus in solid fermentation. Microbiology 80, 150–153 (2011). https://doi.org/10.1134/S0026261711010024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261711010024

Keywords

Navigation