Skip to main content
Log in

Microbial community of reduced pockmark sediments (Gdansk Deep, Baltic Sea)

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The microbial community of reduced pockmark sediments in the Russian sector of the Gdansk Deep, Baltic Sea, was investigated by molecular biological techniques. Fluorescent in situ hybridization was used to determine the numbers of eubacteria, archaea, and sulfate-reducing bacteria. Eubacteria were found to predominate in the upper 10 cm of the sediment (up to 5.3 × 109 cells/g wet sediment), while the number of archaea increased in the 10- to 30-cm layers (up to 2.8 × 109 cells/g wet sediment, which is higher than the number of eubacteria in the same horizons). Analysis of 16S rRNA gene fragments revealed members of the following phyla: Proteobacteria, Chloroflexi, Firmicutes, Planctomycetales, and high-G + C gram-positive bacteria. Sulfate-reducing bacteria (SRBs) of the families Syntrophaceae, Desulfuromonadaceae, and Actinobacteria of the genera Kocuria and Rothia were the predominant groups. Molecular probes were used to determine predominance of Desulfovibrionales in the SRB enrichment cultures obtained from different horizons of pockmark sediments. Three archaeal phylotypes were revealed, belonging to Euryarchaeota. One of these fell into the group of uncultured methanotrophic archaea (ANME-1a), while the other two were most closely related to uncultured methanogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geokhimiya vod i donnykh osadkov Baltiiskogo morya v raionakh razvitiya gazovykh kraterov i geoakusticheskikh anomalii (Geochemistry of Waters and Bottom Sediments of the Baltic Sea in the Regions of Development of Gas Craters and Geoacoustic Anomalies), Geodekyan, A.A, Romankevich, E.A, and Trotsyuk, V.Ya., Eds., Moscow: IO RAN, 1997.

    Google Scholar 

  2. Pimenov, N.V., Ul’yanova, M.O., Kanapatskii, T.A., Sivkov, V.V., and Ivanov, M.V., Microbiological and Biogeochemical Processes in a Pockmark of the Gdansk Depression, Baltic Sea, Mikrobiologiya, 2008, vol. 77, no. 5, pp. 651–659 [Microbiology (Engl. Transl.), vol. 77, no. 5, pp. 579–586].

    CAS  Google Scholar 

  3. Pimenov, N.V., Ulyanova, M.O., Kanapatsky, T.A., Veslopolova, E.F., Sigalevich, P.A., and Sivkov, V.V., Microbially Mediated Methane and Sulfur Cycling in Pockmark Sediments of the Gdansk Basin, Baltic Sea, Geo-Marine Lett., 2010, DOI 10.1007/s00367-010-0200-4.

  4. Treude, T., Krüger, M., Boetius, A., and Jørgensen, B.B., Environmental Control on Anaerobic Oxidation of Methane in the Gassy Sediments of Eckernörde Bay (German Baltic), Limnol. Oceanogr., 2005, vol. 50, pp. 1771–1786.

    Article  CAS  Google Scholar 

  5. Knittel, K. and Boetius, A., Anaerobic Oxidation of Methane: Progress with an Unknown Process, Annu. Rev. Microbiol., 2009, vol. 63, pp. 311–334.

    Article  CAS  PubMed  Google Scholar 

  6. Drozdov, V.N., Sergeeva, V.N., Maksimenko, S.Yu., and Zemskaya, T.I., Computer System for Image Analysis of Fluorescently Stained Bacteria, Mikrobiologiya, 2006, vol. 75, no. 6, pp. 751–754 [Microbiology (Engl. Transl.), vol. 75, no. 6, pp. 751–753].

    CAS  Google Scholar 

  7. Bobrov, M.N., Harris, T.D., Saughnessy, K.J., and Litt, G.J., Catalyzed Reporter Deposition, a Novel Method of Signal Amplification, J. Immunol. Methods, 1989, vol. 125, pp. 279–285.

    Article  Google Scholar 

  8. Ishii, K., Mußmann, M., MacGregor, B.J., and Amann, R. An Improved Fluorescence in Situ Hybridization Protocol for the Identification of Bacteria and Archaea in Marine Sediments, FEMS Microbiol. Ecol., 2004, vol. 50, pp. 203–212.

    Article  CAS  PubMed  Google Scholar 

  9. Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A., Combination of 16S Ribosomal-RNA-Targeted Oligonucleotide Probes with Flow-Cytometry for Analyzing Mixed Microbial Populations, Appl. Environ. Microbiol., 1990, vol. 56, pp. 1919–1925.

    CAS  PubMed  Google Scholar 

  10. Raskin, L., Stromely, J.M., Rittmann, B.E., and Stahl, D.A., Group-Specific 16S Ribosomal-RNA Hybridization Probes to Describe Natural Communities of Methanogens, Appl. Environ. Microbiol., 1994, vol. 60, pp. 1232–1240.

    CAS  PubMed  Google Scholar 

  11. Wallner, G., Amann, R., and Beisker, W., Optimizing Fluorescent in situ Hybridization with Ribosomal-RNA-Targeted Oligonucleotide Probes for Flow Cytometric Identification of Microorganisms, Cytometry, 1993, vol. 14, pp. 136–143.

    Article  CAS  PubMed  Google Scholar 

  12. Manz, W., Eisenbrecher, M., Neu, T.R., and Szewzyk, U., Abundance and Spatial Organization of Gram-Negative Sulfate-Reducing Bacteria in Activated Sludge Investigated by in situ Probing with Specific 16S rRNA Targeted Oligonucleotides, FEMS Microbiol. Ecol., 1998, vol. 25, pp. 43–61.

    Article  CAS  Google Scholar 

  13. Widdel, F. and Back, F., The Genus Desulfotomaculum, in The Procariotes, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., Eds., New York: Springer, 1992, pp. 787–794.

    Google Scholar 

  14. Trüper, H.G. and Schlegel, H.G., Sulfur Metabolism in Thiorhodaceae. I. Quantitative Measurements in Growing Cells of Chromatium okenii, Antonie van Leeuwenhoek, J. Microbiol. Serol., 1964, vol. 30, pp. 225–238.

    Google Scholar 

  15. Hristova, K.R., Mau, M., Zheng, D., Aminov, R.I., Mackie, R.I., Gaskins, H.R., and Raskin, L., Desulfotomaculum Genus- and Subgenus-Specific 16S rRNA Hybridization Probes for Environmental Studies, Environ. Microbiol, 2000, vol. 2, pp. 143–159.

    Article  CAS  PubMed  Google Scholar 

  16. Shubenkova, O.V., Zemskaya, T.I., Chernitsyna, S.M., Khlystov, O.M., and Triboi, T.I., The First Results of an Investigation into the Phylogenetic Diversity of Microorganisms in Southern Baikal Sediments in the Region of Subsurface Discharge of Methane Hydrates, Mikrobiologiya, 2005, vol. 74, no. 3, pp. 370–377 [Microbiology (Engl. Transl.), vol. 74, no. 3, pp. 314–320].

    CAS  Google Scholar 

  17. Inoue, H., Nojima, H., and Okayama, H., High Efficiency Transformation of E. coli with Plasmids, Gene, 1990, vol. 26, pp. 23–28.

    Article  Google Scholar 

  18. Ley, R.E., Harris, J.K., Wilcox, J., Spear, J.R., Miller, S.R., Bebout, B.M., Maresca, J.A., Bryant, D.A., Sogin, M.L., and Pace, N.R., Unexpected Diversity and Complexity of the Guerrero Negro Hypersaline Microbial Mat, Appl. Environ. Microbiolol., 2006, vol. 72, no. 5, pp. 3685–3695.

    Article  CAS  Google Scholar 

  19. Edlund, A., Hardeman, F., Jansson, J.K., and Sjoling, S., Active Bacterial Community Structure along Vertical Redox Gradients in Baltic Sea Sediment, Environ Microbiol., 2008, vol. 10, no. 8, pp. 2051–2063.

    Article  PubMed  Google Scholar 

  20. Teske, A., Hinrichs, K., Edgcomb, V., Comez, A., Kysela, D., Sylva, S.P., Sogin, M.L., and Jannasch, H.W., Microbial Diversity of Hydrothermal Sediments in the Guaymas Basin: Evidence for Anaerobic Methanotrophic Communities, Appl. Environ. Microbiolol., 2002, vol. 68, no. 4, pp. 1994–2007.

    Article  CAS  Google Scholar 

  21. Musat, F., Galushko, A., Jacob, J., Widdel, F., Kube, M., Reinhardt, R., Wilkes, H., Schink, B., and Rabus, R., Anaerobic Degradation of Naphthalene and 2-Methylnaphthalene by Strains of Marine Sulfate-Reducing Bacteria, Environ. Microbiol., 2009, vol. 11, no. 1, pp. 209–219.

    Article  CAS  PubMed  Google Scholar 

  22. Leloup, J., Fossing, H., Kohls, K., Holmkvist, L., Borowski, C., and Jørgensen, B.B., Sulfate-Reducing Bacteria in Marine Sediment (Aarhus Bay, Denmark): Abundance and Diversity Related to Geochemical Zonation, Environ. Microbiol., 2009, vol. 11, no. (5), pp. 1278–1291.

    Article  CAS  PubMed  Google Scholar 

  23. Hinrichs, K.U., Hayes, J.M., Sylva, S.P., Brewer, P.G., and DeLong, E.F., Methane-Consuming Archaebacteria in Marine Sediments, Nature, 1999, vol. 398, no. 6730, pp. 802–805.

    Article  CAS  PubMed  Google Scholar 

  24. Valentine, D.L. and Reeburgh, W.S., New Perspectives on Anaerobic Methane Oxidation (Mini Review), Environ. Microbiol., 2000, vol. 2, no. 5, pp. 477–484.

    Article  CAS  PubMed  Google Scholar 

  25. Meulepas, R., Jagersma, C., Gieteling, J., Buisman, C., Stams, A., and Lens, P., Enrichment of Anaerobic Methanotrophs in Sulfate-Reducing Membrane Bioreactors, Biotechnol. Bioeng., 2009, vol. 104, no. 3, pp. 458–470.

    Article  CAS  PubMed  Google Scholar 

  26. Merkel’, A.Yu., Chernykh, N.A., Kanapatskii, T.A., and Pimenov, N.V., Detection of Methanotrophic Archaea in Pockmark Sediments (Gdansk Deep, Baltic Sea) by Sequence Analysis of the Gene Encoding the α Subunit of Methyl-Coenzyme M reductase, Mikrobiologiya, 2010, vol. 79, no. 6, pp. 852–855 [Microbiology (Engl. Transl.), vol. 79, no. 6, pp.].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Pimenov.

Additional information

Original Russian Text © O.V. Shubenkova, A.V. Likhoshvai, T.A. Kanapatskii, N.V. Pimenov, 2010, published in Mikrobiologiya, 2010, Vol. 79, No. 6, pp. 801–811.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shubenkova, O.V., Likhoshvai, A.V., Kanapatskii, T.A. et al. Microbial community of reduced pockmark sediments (Gdansk Deep, Baltic Sea). Microbiology 79, 799–808 (2010). https://doi.org/10.1134/S0026261710060123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261710060123

Keywords

Navigation