Skip to main content
Log in

Molecular analysis of high-affinity methane-oxidizing enrichment cultures isolated from a forest biocenosis and agrocenoses

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Methane oxidation by microorganisms inhabiting aerobic soils is a key process involved in the regulation of the concentration of this significant greenhouse gas in the atmosphere; however, the microorganisms responsible for this process remain unknown. Three stable methane-oxidizing cultures were isolated from samples of forest soils (FS) and agricultural soils (AS) of Moscow oblast, as well as from soil samples collected from a Belgian agrocenosis (BS). The obtained enrichment cultures exhibit a high affinity for methane; their km values range from 54.2 to 176.8 nM CH4 and are comparable to those of aerobic soils. Analysis of the fragments of the ribosomal (16S rRNA) and functional (pmoA) genes of methanotrophs by PCR— DGGE and cloning demonstrated the presence of bacteria belonging to the genera Methylocystis in FS, Methylosinus in AS and BS, and Methylocella in BS. It was established that Methylocystis and Methylosinus detected in the enrichment cultures contain the genes encoding the synthesis of the active center of two membrane-bound particulate methane monooxygenases; it is likely that one of these genes (pmoA2) is responsible for the capacity of these microorganisms for oxidation of atmospheric methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rasmussen, R.A. and Khalil, A.K., Atmospheric Methane (CH4): Trends and Seasonal Cycles, J. Geo-phys. Res., 1981, vol. 86, no. 10, pp. 9826–9832.

    Article  CAS  Google Scholar 

  2. Conrad, R., Soil Microorganisms as Controllers of Atmospheric Trace Gases (H2, CO, CH4, N2O and NO), Microbiol. Rev., 1996, vol. 60, pp. 609–640.

    CAS  PubMed  Google Scholar 

  3. Boeckx, P., Van Cleemput, O., and Villarvo, I., Methane Oxidation in Soils with Different Textures and Land Use, Nut. Cyc. Agroecosys, 1997, vol. 49, pp. 91–95.

    Article  CAS  Google Scholar 

  4. Chan, A.S.K. and Parkin, T.B., Methane Oxidation and Production Activity in Soils from Natural and Agricultural Ecosystems, J. Environ. Qual., 2001, vol. 30, pp. 1896–1903.

    Article  CAS  PubMed  Google Scholar 

  5. Knief, C., Lipski, A., and Dunfield, P.E., Diversity and Activity of Methanotrophic Bacteria in Different Upland Soils, Appl. Environ. Microbiol., 2003, vol. 69, pp. 6703–6714.

    Article  CAS  PubMed  Google Scholar 

  6. Semenov, V.M., Kravchenko, I.K., Kuznetsova, T.V., Bykova, S.A., Dulov, L.E., Gal’chenko, V.F., Pardini, G., Gispert, M., Boeckx, P., and Van Cleemput, O., Seasonal Dynamics of Atmospheric Methane Oxidation in Gray Forest Soils, Mikrobiologiya, 2004, vol. 73, no. 3, pp. 50–57 [Microbiology (Engl. Transl.), vol. 73, no. 3, pp. 356-362].

    Google Scholar 

  7. King, G.M., Ecological Aspects of Methane Oxidation, a Key Determinant of Global Methane Dynamics, Adv. Microb. Ecol., 1992, vol. 12, pp. 431–468.

    CAS  Google Scholar 

  8. Hütch, B.W., Methane Oxidation, Nitrification and Counts of Methanotrophic Bacteria in Soils from a Long-Term Fertilization Experiment (Ewiger Roggenbau at Halle), J. Plant. Nutr. Soil. Sc, 2001, vol. 164, no. 1, pp. 21–28.

    Article  Google Scholar 

  9. Kravchenko, I.K., Semenov, V.M., Kuznetsova, T.V., Bykova, S.A., Dulov, L.E., Gal’chenko, VF, Pardini, G., Gispert, M., Boeckx, P., and Van Cleemput, O., Physicochemical and Biological Factors Affecting Atmospheric Methane Oxidation in Gray Forest Soils, Mikrobiologiya, 2005, vol. 74, no. 2, pp. 255–260 [Microbiology (Engl. Transl.), vol. 74, no. 2, pp. 216-220].

    CAS  Google Scholar 

  10. Kolb, S., Knief, C., Dunfield, P.-F., and Conrad, R., Abundance and Activity of Uncultured Methanotrophic Bacteria Involved in the Consumption of Atmospheric Methane in Two Forest Soils, Environ. Microbiol., 2005, vol. 7, pp. 1150–1161.

    Article  CAS  PubMed  Google Scholar 

  11. Heyer, J., Galchenko, V.F., and Dunfield, P.F., Molecular Phylogeny of Type II Methane Oxidizing Bacteria Isolated from Various Environments, Microbiology (UK), 2002, vol. 148, pp. 2831–2846.

    CAS  Google Scholar 

  12. Bourne, D.G., McDonald, I.R., and Murrell, J.C., Comparison of pmoA PCR Primers Sets as a Tool for Investigation Methanotrophs Diversity in Three Danish Soils, Appl. Environ. Microbiol., 2001, vol. 67, pp. 3802–3809.

    Article  CAS  PubMed  Google Scholar 

  13. Dedysh, S.N., Khmelenina, V.N., Suzina, N.E., Trot-senko, Y.A., Semrau, J.D., Liesack, W., and Tiedje, J.M., Methylocapsa acidiphila gen. nov., sp. nov., a Novel Methane-Oxidizing and Dinitrogen-Fix-ing Acidophilic Bacterium from Sphagnum Bog, Int. J. Syst. Evol. Microbiol., 2002, vol. 52, pp. 251–261.

    CAS  PubMed  Google Scholar 

  14. Bykova, S., Boeckx, P., Kravchenko, I., Galchenko, V, and Van Cleemput, O., Impact of Fertilization Type and CH4 Concentration on Methane Oxidation and Methanotrophic Diversity in Arable Soils, Biol. Fertil. Soils., 2006, vol. 43, no. 3, pp. 341–348.

    Article  Google Scholar 

  15. Slobodova, N.V., Kolganova, T.V., Bulygina, E.S., Kuznetsov, B.B., Turova, T.P., and Kravchenko, I.K., Comparative Characterization of Methanotrophic Enrichments by Serological and Molecular Methods, Mikrobiologiya, 2006, vol. 75, no. 3, pp. 397–403 [Microbiology (Engl. Transl.), vol. 75, no. 3, pp. 336-342].

    CAS  Google Scholar 

  16. Stahl, D.A. and Amann, R., Nucleic Acid Techniques in Bacterial Systematics, in Development and Application of Nucleic Acid Probes, Stakebrandt, E. and Good-fellow, M., Eds., Chichester: Wiley, 1991, pp. 205–248.

    Google Scholar 

  17. Daims, H., Bruhl, A., Amann, R, Schleifer, K.-H., and Wagner, M., The Domain-Specific Probe EUB338 Is Unsufficient for the Detection of All Bacteria: Development of a More Comprehensive Probe Set, Syst. Appl. Microbiol., 1999, vol. 22, pp. 434–444.

    CAS  PubMed  Google Scholar 

  18. Eller, G., Stubner, S., and Frenzel, P., Group-Specific 16S rRNA Targeted Probes for the Detection of Type I and Type II Methanotrophs by Fluorescence in situ Hybridisation, FEMS Microbiol. Letts., 2001, vol. 198, pp. 31–37.

    Article  Google Scholar 

  19. Holmes, A.J., Costello, A., Lidstrom, M.E., and Murrell, G.C., Evidence that Particulate Methane Monooxygenase and Ammonia Monooxygenase may be Evolutionarily Related, FEMS Microbiol. Lett., 1995, vol. 132, pp. 203–208.

    Article  CAS  PubMed  Google Scholar 

  20. Muyzer, G., de Waal, E.C., and Uitterlinde, A.G., Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S RRNA, Appl. Environ. Microbiol., 1993, vol. 59, pp. 695–700.

    CAS  PubMed  Google Scholar 

  21. Boon, N., De Windt, W., Verstraete, W., and Top, E.M., Evaluation of Nested PCR-DGGE (Denaturing Gradient Gel Electrophoresis) with Group-Specific 16S rRNA Primers for the Analysis of Bacterial Communities from Different Wastewater Treatment Plants, FEMS Microbiol. Ecol., 2002, vol. 39, pp. 101–112.

    CAS  PubMed  Google Scholar 

  22. Dunfield, P.E., Liesack, W., Henckel, T., Knowles, R., and Conrad, R., High-Affinity Methane Oxidation by a Soil Enrichment Culture Containing a Type II Metha-notroph, Appl. Environ. Microbiol., 1999, vol. 65, no. 3, pp. 1009–1014.

    CAS  PubMed  Google Scholar 

  23. Joergensen, I. and Degn, H., Mass Spectrometric Measurements of Methane and Oxygen Utilization by Methanotrophic Bacteria, FEMS Microbiol. Letts., 1981, vol. 64, pp. 331–335.

    Google Scholar 

  24. Gulledge, J. and Schimel, J.P., Low-Concentration Kinetics of Atmospheric Methane Oxidation in Soil and Mechanism of NH4 + Oxidation, Appl. Environ. Microbiol., 1998, vol. 64, pp. 4291–298.

    CAS  PubMed  Google Scholar 

  25. Seghers, D., Top, E.M., Reheul, D., Bulcke, R., Boeckx, P., Verstraete, W., and Siciliano, S., Long-Term Effects of Mineral Versus Organic Fertilizers on Activity and Structure of the Methanotrophic Community in Agriculture Soil, Environ. Microbiol., 2003, vol. 51, pp. 867–877.

    Article  CAS  Google Scholar 

  26. Seghers, D., Verthe, K., Reheul, D., Bulcke, R., Siciliano, S.D., Verstraete, W., and Top, E.M., Effect of Long-Term Herbicide Applications on the Bacterial Community Structure and Function in an Agricultural Soil, FEMS Microbiol. Ecol., 2006, vol. 46, no. 2, pp. 139–146.

    Google Scholar 

  27. Dunfield, P.F., Tchawa Yimga, M., Dedysh, S.N., Berger, U., Liesack, W., and Heyer, J., Isolation of a Methylocystis Strain Containing a Novel pmoA-Like Gene, FEMS Microbiol. Ecol., 2002, vol. 41, pp. 17–26.

    Article  CAS  PubMed  Google Scholar 

  28. Baani, M. and Liesack, W., Two Isozymes of Particulate Methane Monooxygenase with Different Methane Oxidation Kinetics Are Found in Methylocystis sp. Strain SC2, Proc Natl. Acad. Sci. USA, 2008, vol. 105, no. 29, pp. 10203–10208.

    Article  CAS  PubMed  Google Scholar 

  29. Tchawa Yimga, M., Dunfield, R.F., Riske R., Heuer J., and Liesask W., Wide Distribution of a Novel pmoA-Like Gene Sopy among Type II Methanotrophs, and its Expression in Methylocystis strain SC2, Appl. Environ. Microbiol., 2003, vol. 69, no. 9, pp. 5593–5602.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Kravchenko.

Additional information

Original Russian Text © I.K. Kravchenko, A.K. Kizilova, S.A. Bykova, E.V. Men’ko, V.F. Gal’chenko, 2010, published in Mikrobiologiya, 2010, Vol. 79, No. 1, pp. 114–122.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kravchenko, I.K., Kizilova, A.K., Bykova, S.A. et al. Molecular analysis of high-affinity methane-oxidizing enrichment cultures isolated from a forest biocenosis and agrocenoses. Microbiology 79, 106–114 (2010). https://doi.org/10.1134/S0026261710010145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261710010145

Key words

Navigation