Skip to main content
Log in

Membrane lipid and cytosol carbohydrate composition in Aspergillus niger under heat shock

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A submerged Aspergillus niger culture exposed to heat shock (40–41°C) for 1, 3, and 6 h acquires resistance to a more severe, lethal heat shock (55°C, 20 min). A general trend characteristic of a heat shock occurring during the trophophase or idiophase (regardless of its duration) is an increase in the trehalose level in the cytosol carbohydrate fraction and in the content of sphingolipids and phosphatidic acid in the membrane lipid fraction. Contrary to generally accepted views, no increase in the content of unsaturated fatty acid in the main phospholipid fraction, sterol level, and share of “bilayer” phospholipids was detected. The results obtained are discussed in terms of the current hypotheses concerning membrane protection under heat shock and our own suggestion on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindquist, S., The Heat-Shock Response, Ann. Rev. Biochem., 1986, vol. 55, pp. 1151–1191.

    Article  CAS  PubMed  Google Scholar 

  2. Piper, P.W., Molecular Events Associated with Acquisition of Heat Tolerance by the Yeast Saccharomyces cer-evisiae, FEMS Microbiol. Rev., 1993, vol. 11, pp. 339–356.

    Article  CAS  PubMed  Google Scholar 

  3. Sinensky, M., Homeoviscous Adaptatio—A Homeo-static Process That Regulates the Viscosity of Membrane Lipids in Escherichia coli, Proc. Natl. Acad. Sci. USA, 1974, vol. 71, no. 2, pp. 522–525.

    Article  CAS  PubMed  Google Scholar 

  4. Hazel, J.R, Thermal Adaptation in Biological Membranes: Is Homoviscous Adaptation the Explanation?, Annu. Rev. Physiol., 1995, vol. 57, pp. 19–42.

    CAS  PubMed  Google Scholar 

  5. Weete, J.D., Lipid Biochemistry of Fungi and Other Organisms, New York: Plenum Press, 1982, pp. 301–312.

    Google Scholar 

  6. Carratu, L., Franceschelli, S., Pardini, C.L., Koba-yashi, G.S., Horvath, I., Vigh, L., and Maressa, B., Membrane Lipid Perturbation Modifies the Set Point of the Temperature of Heat Shock Response in Yeast, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 3870–3875.

    Article  CAS  PubMed  Google Scholar 

  7. Swan, T.M. and Watson, K., Membrane Fatty Acid Composition and Membrane Fluidity as Parameters of Stress Tolerance in Yeast, Can. J. Microbiol., 1997, vol. 43, pp. 70–77.

    Article  CAS  PubMed  Google Scholar 

  8. Tereshina, V.M., Resting Cells and Adaptation of Mycelial Fungi to Heat Shock, Doctoral (Biol.) Dissertation, Moscow: INMI RAN, 2006.

    Google Scholar 

  9. Thevelein, J.M, Regulation of Trehalose Metabolism and Its Relevance to Cell Growth and Function, in The Mycota, Brambl, R. and Marzluf, G.A., Eds., Berlin: Springer, 1996, pp. 395–420.

    Google Scholar 

  10. Tereshina, V.M., Thermotolerance in Fungi: The Role of Heat Shock Proteins and Trehalose, Mikrobiologiya, 2005, vol. 74, no. 3, pp. 293–304 [Microbiology (Engl. Transl.), vol. 74, no. 3, pp. 247-257].

    CAS  Google Scholar 

  11. Blumental, N.J. and Roseman, S., Quantitative Estimation of Chitin in Fungi, J. Bacteriol., 1967, vol. 74, pp. 222–225.

    Google Scholar 

  12. Nichols, B.W., Separation of the Lipids of Photosyn-thetic Tissues; Improvement in Analysis by Thin-Layer Chromatography, Biochim. Biophys. Acta, 1963, vol. 4145, pp. 417–422.

    Article  Google Scholar 

  13. Keits, M., Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids, Amsterdam: Elsevier, 1972 [Russ. Transl. Moscow: Mir, 1975].

    Google Scholar 

  14. Benning, C, Huang, Z.H., and Gage, D.A., Accumulation of a Novel Glycolipid and a Betaine Lipid in Cells of Rhodobacter sphaeroides Grown under Phosphate Limitation, Arch. Biochem. Biophys., 1995, vol. 317, no. 1, pp. 103–111.

    Article  CAS  PubMed  Google Scholar 

  15. Somogui, M., Determination of Blood Sugar, J. Biol. Chem., 1945, vol. 160, p. 69.

    Google Scholar 

  16. Brobst, K.M., Gas-Liquid Chromtography of Trime-thysilil Sugar Derivatives, in Metody issledovaniya uglevodov (Methods of Carbohydrate Research), Horlin, F.J., Ed., Moscow: Mir, 1975.

    Google Scholar 

  17. Seymour, I.J. and Piper, P.W., Stress Induction of HSP30, the Plasma Membrane Heat Shock Protein Gene of Saccharomyces cerevisiae, Appears not to Use Known Stress-Regulated Transcription Factors, Microbiology (UK), 1999, vol. 145, pp. 231–239.

    Article  CAS  Google Scholar 

  18. Dickson, R.C. and Lester, R.L., Sphingolipid Functions in Saccharomyces cerevisiae, Biochim. Biophys. Acta, 2002, vol. 1583, pp. 13–25.

    CAS  PubMed  Google Scholar 

  19. Cheng, J., Park, T.S., Fischl, A.S., and Ye, X.S., Cell Cycle Progression and Cell Polarity Require Sphingolipid Biosynthesis in Aspergillus niger, Mol. Cell. Biol., 2001, vol. 21, no. 18, pp. 6198–6209.

    Article  CAS  Google Scholar 

  20. Sakai, H. and Kajiwara, S., Membrane Lipid Profile of an Edible Basidiomycete Lentinula edodes during Growth and Cell Differentiation, Lipids, 2004, vol. 39, no. 1, pp. 67–73.

    Article  CAS  PubMed  Google Scholar 

  21. Levery, S.B., Momany, M., Lindsey, R., Toledo, M.S., Shayman, J.A., Fuller, M., Brooks, K., Doong, R.L., Straus, A., and Takahashi, H.K., Disruption of the Glycosylceramide Biosynthetic Pathway in Aspergillus nidulans and Aspergillus fumigatus by Inhibitors of UDP-Glc:Ceramide Glucosyltransferase Strongly Affects Spore Germination, Cell Cycle, and Hyphal Growth, FEBSLett., 2002, vol. 525, pp. 59–64.

    Article  CAS  Google Scholar 

  22. Siskind, L.J., Mitochondrial Ceramide and Induction of Apoptosis, J. Bioenerg. Biomembr., 2005, vol. 37, no. 3, pp. 143–153.

    Article  CAS  PubMed  Google Scholar 

  23. Jenkins, G.M., The Emerging Role for Sphingolipids in Eukaryotic Heat Shock Response, CMLS Cell. Mol. Life Sci., 2003, vol. 60, pp. 701–710.

    Article  CAS  Google Scholar 

  24. Beck, J.G., Mathieu, D., Loudet, C., Buchoux, S., and Dufours, E.J., Plant Sterol in “Rafts”: A Better Way to Regulate Membrane Thermal Shocks, FASEB J., 2007, vol. 21, pp. 1714–1723.

    Article  CAS  PubMed  Google Scholar 

  25. Yu, R.K., Koerner, A.W., Scarsdale, J.N., and Preste-gard, J.H., Elucidation of Glycolipid Structure by Proton Nuclear Magnetic Resonance Spectroscopy, Chem. Phys. Lipids, 1986, vol. 42, pp. 27–48.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, X., Devaiah, S.P., Zhang, W, and Welti, R., Signaling Functions of Phosphatidic Acids, Prog. Lipid Res., 2006, vol. 45, pp. 250–278.

    Article  CAS  PubMed  Google Scholar 

  27. Cazzolli, R., Shemon, A.N., Fang, M.Q., and Hughes, WE., Phospholipid Signaling through Phos-pholipase D and Phosphatidic Acid, IUBMB Life, 2006, vol. 58, no. 8, pp. 457–461.

    Article  CAS  PubMed  Google Scholar 

  28. Mumma, R.O., Sekura, R.D., and Fergus, S.L., Ther-mophilic Fungi: III. The Lipids of Humicola grisea var. thermoidea, Lipids, 1971, vol. 6, no. 8, pp. 589–594.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Tereshina.

Additional information

Original Russian Text © V.M. Tereshina, A.S. Memorskaya, E.R. Kotlova, E.P. Feofilova, 2010, published in Mikrobiologiya, 2010, Vol. 79, No. 1, pp. 39–44.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tereshina, V.M., Memorskay, A.S., Kotlova, E.R. et al. Membrane lipid and cytosol carbohydrate composition in Aspergillus niger under heat shock. Microbiology 79, 40–46 (2010). https://doi.org/10.1134/S0026261710010066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261710010066

Key words

Navigation