Skip to main content
Log in

Inorganic polyphosphates of different fractions in the mutant yeast Saccharomyces cerevisiae with impaired mitochondrial ATP synthesis

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Impaired synthetase function of the mitochondrial ATPase induced by mutation in the ATP22 gene results in decreased accumulation of inorganic polyphosphates in the stationary growth phase of the yeast Saccharomyces cerevisiae grown on glucose. The content of polyphosphates in the mutant strain in this phase is 2.5 times lower than in the parent strain. This difference is most pronounced for the acid-soluble polyP1 fraction and the alkali-soluble polyP3 fraction. Polyphosphate chain length in mutant cells is less than in the parent cells in both the acid-soluble polyP1 and in the salt-soluble polyP2 fractions. The mutation had no effect on polyphosphates content in the mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kulaev, I.S., Vagabov, V.M., and Kulakovskaya, T.V. Vysokomolekulyarnye neorganicheskie poliP: biokhimiya, kletochnaya biologiya, biotekhnologiya (High-Molecular Inorganic PolyP: Biochemistry, Cell Biology, and Biotechnoilogy), Moscow: Nauchnyi Mir, 2005.

    Google Scholar 

  2. Kornberg, A., Rao, N.N., and Ault-Riche, D., Inorganic Polyphosphate: A Molecule with Many Functions, Ann. Rev. Biochem., 1999, vol. 68, pp. 89–125.

    Article  CAS  PubMed  Google Scholar 

  3. Helfenbein, K., Ellis, T., Dieckmann, C, and Tza-goloff, A., ATP22, a Nuclear Gene Required for Expression of the F0 Sector of Mitochondrial ATPase in Saccharomyces cerevisiae, J. Biol. Chem., 2003, vol. 278, pp. 19751–19756.

    Article  CAS  PubMed  Google Scholar 

  4. Vagabov, V.M., Trilisenko, L.V., and Kulaev, I.S., Dependence of Inorganic Polyphosphate Chain Length on the Orthophosphate Content in the Culture Medium of the Yeast Saccharomyces cerevisiae, Biokhimiya, 2000, vol. 65, pp. 414–420 [Biochemistry (Moscow) (Engl. Transl.), vol. 65, no. 3, pp. 349–355].

    Google Scholar 

  5. Lichko, L.P. Kulakovskaya, T.V, and Kulaev, I.S., Inorganic Polyphosphates and Exopolyphosphatases in Different Cell Compartments of Saccharomyces cerevisiae, Biokhimiya, 2006, vol. 71, pp. 1445–1450 [Biochemistry (Moscow) (Engl. Transl.), vol. 71, no. 11, pp. 1171–1175].

    Google Scholar 

  6. Lichko, L., Kulakovskaya, T., Pestov, N., and Kulaev, I., Inorganic Polyphosphates and Exopolyphosphatases in Cell Compartments of the Yeast Saccharomyces cerevisiae under Inactivation of PPX1 and PPN1 genes, Bio-sci. Rep., 2006, vol. 26, pp. 45–54.

    Article  CAS  Google Scholar 

  7. Kulakovskaya, T.V., Andreeva, N.A., Karpov, A.V., Sidorov, I.A., and Kulaev, I.S., Hydrolysis of Tripoly-phosphate by Purified Exopolyphosphatase from Saccharomyces cerevisiae Cytosol: Kinetic Model, Biokhimiya, 1999, vol. 64, pp. 1180–1184 [Biochemistry (Moscow) (Engl. Transl.), vol. 64, no. 9, pp. 1180-1184].

    Google Scholar 

  8. Bensandoun, A. and Weinstein, D. Assay of Proteins in the Presence of Interfering Materials, Anal. Biochem., 1976, vol. 70, pp. 241–250.

    Article  Google Scholar 

  9. Schatz, G.J. Impaired Binding of Mitochondrial Ade-nosine Triphosphatase in the Cytoplasmic Petite Mutants of Saccharomyces cerevisiae, J. Biol. Chem., 1967, vol. 243, pp. 2192–2199.

    Google Scholar 

  10. Meijer, M.M.C., Boonstra, J., Verkleij, A., and Verrips C.T., Glucose Repression in Saccharomyces cerevisiae Is Related to the Glucose Concentration rather than the Glucose Flux, J. Biol. Chem., 1998, vol. 273, pp. 24102–24107.

    Article  CAS  PubMed  Google Scholar 

  11. Vagabov, V.M., Trilisenko, L.V., Shchipanova, I.N., Sibel’dina, L.A., and Kulaev, I.S., Changes in Inorganic Polyphosphate Length during the Growth of Saccharomyces cerevisiae, Mikrobiologiya, 1998, vol. 67, pp. 193–198 [Microbiology (Engl. Transl.), vol. 67, no. 2, pp. 153-157].

    Google Scholar 

  12. Vagabov, V.M., Trilisenko, L.V., Kulakovskaya, E.V., and Kulaev, I.S., Study of the Content of Inorganic Polyphosphates in Saccharomyces cerevisiae Grown on Different Carbon Sources with Different O2 Concentrations in the Medium, Mikrobiologiya, 2008, vol. 77, pp. 611–616 [Microbiology (Engl. Transl.), vol. 67, no. 5, pp. 541-546].

    CAS  Google Scholar 

  13. Vagabov, V.M., Trilisenko, L.V., Kulakovskaya, T.V., and Kulaev I.S. Effect of Carbon Source on Polyphosphate Accumulation in Saccharomyces cerevisiae, FEMS Yeast Res., 2008, vol. 8, pp. 877–882.

    Article  CAS  PubMed  Google Scholar 

  14. Hothorn, M., Neumann, H., Lenherr, E.D., Wehner, M., Rybin, V., Hassa P.O., Uttrnweiler, A., Reinhardt, M., Schmidt, A, Seiler, J., Ladurner, A G., Hermann, C, Schef-fzek, K, and Mayer, A. Catalytic Core of a MembraneAsso-ciated Eukaryotic Polyphosphate Polymerase, Science, 2009, vol. 324, pp. 513–516.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Kulakovskaya.

Additional information

Original Russian Text © A.A. Tomashevsky, L.P. Ryazanova, T.V. Kulakovskaya, I.S. Kulaev, 2010, published in Mikrobiologiya, 2010, Vol. 79, No. 1, pp. 35–38.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomashevsky, A.A., Ryazanova, L.P., Kulakovskaya, T.V. et al. Inorganic polyphosphates of different fractions in the mutant yeast Saccharomyces cerevisiae with impaired mitochondrial ATP synthesis. Microbiology 79, 30–33 (2010). https://doi.org/10.1134/S0026261710010042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261710010042

Key words

Navigation