Skip to main content
Log in

Response to oxygen limitation in bacteria of the genus sulfobacillus

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

For cultures of moderately thermophilic chemolithotrophic bacteria Sulfobacillus sibiricus N1 and SSO, S. thermosulfidooxidans subsp. asporogenes 41, and the thermotolerant strain S. thermotolerans Kr1 grown under forced aeration and in a high medium layer without aeration, growth characteristics, substrate consumption, and exometabolite formation were compared. Sulfobacilli grown under oxygen limitation exhibited greater generation time, longer growth period, cell yield decreased by from 40 to 85% (depending on the strain), suppressed cell respiration ( demonstrated for S. sibiricus N1 ), accumulation of exometabolites (acetate and propionate) in the medium, and emergence of resting forms. For strains N1, SSO, and Kr1, oscillations of Fe(II) and Fe(III) content in the medium were revealed. For S. sibiricus N1 and S. thermotolerans Kr1, grown under hypoxia (0.07% O2 in the gas phase), coupling of substrate oxidation with Fe(III) reduction was revealed, as well as utilization of Fe(III) as an electron acceptor alternative to oxygen. The role of labile energy and constructive metabolism for survival of sulfobacilli under diverse conditions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergey’s Manual of Systematic Bacteriology, 2nd ed, Garrity, G.M., Ed., New York: Springer, 2005, vol. 2.

    Google Scholar 

  2. Wood, A.P. and Kelly, D.P., Autotrophic and Mix-otrophic Growth of Three Thermoacidophilic Iron-Oxidizing Bacteria, FEMSMicrobiol. Lett., 1983, vol. 1, pp. 107–123.

    Article  Google Scholar 

  3. Zakharchuk, L.M., Tsaplina, I.A., Krasil’nikova, E.N., Bogdanova, T.I., and Karavaiko, G.I., Carbon Metabolism in Sulfobacillus thermosulfidooxidans, Mikrobi-ologiya, 1994, vol. 63, no. 4, pp. 573–580 [Microbiology (Engl. Transl.), vol. 63, no. 4, pp. 324-428].

    CAS  Google Scholar 

  4. Zakharchuk, L.M., Egorova, M.A., Tsaplina, I.A., Bogdanova, T.I., Krasil’nikova, E.N., Melamud, V.S., and Karavaiko, G.I., Activity of the Enzymes of Carbon Metabolism in Sulfobacillus sibiricus under Various Conditions of Cultivation, Mikrobiologiya, 2003, vol. 72, no. 5, pp. 621–626 [Microbiology (Engl. Transl.), vol. 72, no. 5, pp. 553-557].

    CAS  Google Scholar 

  5. Tsaplina, I.A., Krasil’nikova, E.N., Zakharchuk, L.M., Egorova, M.A., Bogdanova, T.I., and Karavaiko, G.I., Carbon Metabolism in Sulfobacillus thermosulfidooxidans subsp. asporogenes, Strain 41 Mikrobiologiya. 2000, vol. 69, no. 3, pp. 334–340 [Microbiology (Engl. Transl.), vol. 69, no. 3, pp. 271-276].

    CAS  Google Scholar 

  6. Tsaplina, I.A., Bogdanova, T.I., Kondrat’eva, T.F., Melamud, V.S., Lysenko, A.M., and Karavaiko, G.I., Genotypic and Phenotypic Polymorphism of Environmental Strains of the Moderately Thermophilic Bacterium Sulfobacillus sibiricus, Mikrobiologiya, 2008, vol. 77, no. 2, pp. 178–187 [Microbiology (Engl. Transl.), vol. 77, no. 2, pp. 151-158].

    CAS  Google Scholar 

  7. Tsaplina, I.A., Krasil’nikova, E.N., Zhuravleva, A.E., Egorova, M.A, Zakharchuk, L.M., Suzina, N.E., Duda, V.I., Bogdanova, T.I., Stadnichuk, I.N., and Kondrat’eva, T.F., Phenotypic Properties of Sulfobacillus thermotolerans: Comparative Aspects, Mikrobiologiya, 2008, vol. 77, no. 6, pp. 738–748 [Microbiology (Engl. Transl.), vol. 77, no. 6, pp. 654-665].

    CAS  Google Scholar 

  8. Johnson, D.B., Patrick, C.J., d’Hugues, P., and Hall-berg, K.B., Sulfobacillus benefaciens sp. nov, an Acido-philic Facultative Anaerobic Firmicute Isolated from Mineral Bioleaching Operations, Extremophiles, 2008, vol. 12, pp. 789–798.

    Article  CAS  PubMed  Google Scholar 

  9. Bridge, T.A.M. and Johnson, D.B., Reduction of Soluble Iron and Reductive Dissolution of Ferric Iron-Containing Minerals by Moderately Thermophilic Iron-Oxidizing Bacteria, Appl. Environ. Microbiol., 1998, vol. 64, no. 6, pp. 2181–2186.

    CAS  PubMed  Google Scholar 

  10. Krasil’nikova, E.N., Bogdanova, T.I., Zakharchuk, L.M., and Tsaplina, I.A., Sulfur-Metabolizing Enzymes in Thermoacidophilic Bacteria Sulfobacillus sibiricus, Prikl. Biokhim. Mikrobiol., 2004, vol. 40, no. 1, pp. 62–65 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 40, no. 1, pp. 53-56].

    PubMed  Google Scholar 

  11. Johnson, D.B., Bacelar-Nicolau, R, Okibe, N, Yahya, A, and Hallberg, K.B., Role of Pure and Mixed Cultures of Gram-Positive Eubacteria in Mineral Leaching, in Biohydrometallurgy: Fundamentals, Technology and Sustainable Development, Part A, Ciminelli, V.S.T. and Garcia, O., Eds., pp. 461–469.

  12. Sugio, T., Mizunashi, W., Inagaki, K., and Tano, T., Purification and Some Properties of Sulfur: Ferric Iron Oxidoreductase from Thiobacillus ferrooxidans, J. Bac-teriol., 1987, vol. 169, no. 11, pp. 4916–4922.

    CAS  Google Scholar 

  13. Sugio, T, Hirose, T, Ye Li-Zhen, and Tano, T, Purification and Some Properties of Sulfite:Ferric Ion Oxidoreductase Purified from Thiobacillus ferrooxidans, J. Bacteriol., 1992, vol. 174, pp. 4189–4196.

    CAS  PubMed  Google Scholar 

  14. Melamud V.S., Pivovarova T.A., Tourova T.P., Osipov G.A., Lysenko A.M., Kondrat’eva T.F., and Karavaiko G.I. Sulfobacillus sibiricus sp. nov., a New Moderately Thermophilic Bacterium, Mikrobiologiya, 2003, vol. 72, no. 5, pp. 681–688 [Microbiology (Engl. Transl.), vol. 72, no. 5, pp. 605-613].

    CAS  Google Scholar 

  15. Bogdanova, T.I., Tsaplina, I.A., Kondrat’eva, T.F., Duda, V.I., Suzina, N.E., Melamud, V.S., Tourova, T.P., and Karavaiko, G.I., Sulfobacillus thermotolerans sp. nov, a Thermotolerant, Chem-olithotrophic Bacterium, Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 1039–1042.

    Article  CAS  PubMed  Google Scholar 

  16. Tsaplina, I.A., Bogdanova, T.I., and Karavaiko, G.I., Isolation and Characterization of new Chem-olithotrophic Thermoacidophilic Bacteria, in Otsenka sovremennogo sostoyaniya mikrobiologicheskikh issledo-vanii v Vostochno-Sibirskom regione, Nauchno-prak-ticheskaya konferentsiya. 2002 (Modern State of Microbiological Research in the East Siberian Region. Scientific Practical Conference), Irkutsk, pp. 75–76.

  17. Vartanyan, S., Pivovarova, T.A., Tsaplina, I.A., Lysenko, A.M., and Karavaiko, G.I., A New Thermoacidophilic Bacterium of the Genus Sulfobacillus, Mikrobiologiya, 1988, vol. 57, no. 2, pp. 268–274.

    CAS  Google Scholar 

  18. Silverman, M.P. and Lündgren, D.C., Study on the Chemoautotrophic Iron Bacterium Ferrobacillus ferrooxidans. I. An Improved Medium and Harvesting Procedure for Securing High Cell Yield, J. Bacteriol., 1959, vol. 77, no. 5, pp. 642–647.

    CAS  PubMed  Google Scholar 

  19. Brierley, J.A. and Lockwood, S.J., The Occurence of Thermophilic Iron-Oxidizing Bacteria in Copper Leaching System, FEMSMicrobiol. Letts., 1977, vol. 2, pp. 163–165.

    Article  CAS  Google Scholar 

  20. Johnson, D.B., Selective Solid Media for Isolating and Enumerating Acidophilic Bacteria, J. Microbiol. Methods, 1995, vol. 23, pp. 205–218.

    Article  Google Scholar 

  21. Ranson, S., Nonvolatile Mono-, Di-, and Tricarboxy-lic Acids. Chromatographic and Ion Exchange Techniques, in Biokhimicheskie metody analiza rastenii (Biochemical Methods of Plant Analysis), Moscow: Inostr. literatura, 1960, pp. 443–449.

    Google Scholar 

  22. Krasil’nikova, E.N., Tsaplina, I.A., Zakharchuk, L.M., Bogdanova, T.I., and Karavaiko G.I. Metabolism of Reduced Sulfur Compounds in Sulfobacillus thermosul-fidooxidans, strain 1269, Mikrobiologiya, 1998, vol. 67, no. 2, pp. 156–164 [Microbiology (Engl. Transl.), vol. 67, no. 2, pp. 125-132].

    Google Scholar 

  23. Krasil’nikova, E.N., Zakharchuk, L.M., Egorova, M.A., Bogdanova, T.I., Zhuravleva, A.E., and Tsaplina, IA, Regulation of Metabolic Pathways in Sulfobacilli under Different Aeration Regimes, Mikrobiologiya, 2010, vol. 79, no. 2, in press [Microbiology (Engl. Transl.), vol. 79, no. 2, in press.

  24. Brock, T.D. and Gustafson, J., Ferric Iron Reduction by Sulfur-and Iron-Oxidizing Bacteria, Appl. Environ. Microbiol., 1976, vol. 32, pp. 567–571.

    CAS  PubMed  Google Scholar 

  25. Pronk, J.T. and Johnson, D.B., Oxidation and Reduction of Iron by Acidophilic Bacteria, Geomicrobiol. J., 1992, vol. 10, pp. 153–171.

    Article  CAS  Google Scholar 

  26. Johnson, D.B., Ghauri, M.A., and McGinnes, S.M., Biogeochemical Cycling of Iron and Sulfur in Leaching Environments, FEMS Microbiol. Rev., 1993, vol. 11, pp. 63–70.

    Article  CAS  Google Scholar 

  27. Mulyukin, A.L., Lusta, K.A., Gryaznova, A.N., Kozlova, A.N., Duzha, M.V., Duda, V.I., and E1’-Registan, G.I., Formation of Resting Cells by Bacillus cereus and Micrococcus luteus, Mikrobiologiya, 1996, vol. 65, no. 6, pp. 782–789 [Microbiology (Engl. Transl.), vol. 65, no. 6, pp. 683-689].

    CAS  Google Scholar 

  28. Dinarieva, T.Yu., Zhuravleva, A.E., Pavlenko, O.A., Tsaplina, I.A., and Netrusov, A.I., Ferrous Iron Oxidation in a Moderate Thermophile Sulfobacillus sibiricus N1T, 2010 (in press).

  29. Zhuravleva, A.E., Metabolic Pathways in Sulfobacilli at Different Types of Nutrition, Extended Abstract of Cand. Sci. (Biol.) Dissertation, 2009.

  30. Muntyan, M.S., Grabovich, M.Yu., Patritskaya, V.Yu., and Dubinina, G.A., Regulation of Metabolic and Electron Transport Pathways in the Freshwater Bacterium Beggiatoa leptomitiformis D402, Mikrobiologiya, 2005, vol. 74, no. 4, pp. 452–459 [Microbiology (Engl. Transl.), vol. 74, no. 4, pp. 388-394].

    Google Scholar 

  31. Shelemekh, O.V., Geidebrekht, O.V., Plakunov, V.K., and Belyaev, S.S., “Oxygen Regulation” of the Respiratory Chain Composition in the Yeast Debaryomyces hansenii under Multiple Stress, Mikrobiologiya, 2006, vol. 75, no. 4, pp. 562–569 [Microbiology (Engl. Transl.), vol. 75, no. 4, pp. 486-493].

    CAS  Google Scholar 

  32. EP-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Suzina, N.E., Gal’chenko, V.F, and Duda, V.I., Adap-togenic Functions of Extracellular Autoregulators of Microorganisms, Mikrobiologiya, 2006, vol. 75, no. 4, pp. 446–456 [Microbiology (Engl. Transl.), vol. 75, no. 4, pp. 380-389].

    Google Scholar 

  33. Hallberg, K.B., Dopson, M., and Lidström, E.B., Reduced Sulfur Compound Oxidation by Thiobacills caldus, J. Bacteriol., 1996, vol. 178, pp. 6–11.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.A. Tsaplina.

Additional information

Original Russian Text © I.A. Tsaplina, A.E. Zhuravleva, M.A. Egorova, T.I. Bogdanova, E.N. Krasil’nikova, L.M. Zakharchuk, T.F. Kondrat’eva, 2010, published in Mikrobiologiya, 2010, Vol. 79, No. 1, pp. 16–26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsaplina, I., Zhuravlev, A., Egorova, M. et al. Response to oxygen limitation in bacteria of the genus sulfobacillus . Microbiology 79, 13–22 (2010). https://doi.org/10.1134/S0026261710010029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261710010029

Key words

Navigation