Skip to main content
Log in

Lysine decarboxylase activity as a factor of fluoroquinolone resistance in Escherichia coli

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Exposure of E. coli cells to sublethal concentrations of fluoroquinolones induced synthesis of lysine decarboxylase LdcC, which was previously considered to be a constitutive enzyme. Under these conditions, a key role in this process is played by RNA polymerase σS subunit (RpoS); its quantity increased substantially in the presence of antibiotics. Fluoroquinolones of the second and third generations had a more pronounced effect on rpoS expression and LdcC activity than the first-generation antibiotics. A direct correlation was shown between the level of cadaverine, the product of lysine decarboxylase reaction in E. coli cells, and their resistance to fluoroquinolones. An increase in endogenous cadaverine reduced effectiveness of the second and third-generation fluoroquinolones, but had no effect on antimicrobial activity of the first-generation antibiotics. This is in good agreement with the hydrophilic properties of antibiotics of different generations and, consequently, with different mechanisms of their penetration into bacterial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Normark, B.H. and Normark, S., Evolution and Spread of Antibiotic Resistance, J. Intern. Med., 2002, vol. 252, no. 2, pp. 91–106.

    Article  PubMed  CAS  Google Scholar 

  2. Escribano, I., Rodríguez, J.C., Pertegás, V., Cebrian, L., and Royo, G., Relation between Induction of the mar Operon and Cyclohexane Tolerance and Reduction in Fluoroquinolone Susceptibility in Salmonella spp., J. Infect. Chemother, 2006, vol. 12, no. 4, pp. 177–180.

    Article  PubMed  CAS  Google Scholar 

  3. Depardieu, F., Podglajen, I., Leclercq, R., Collatz, E., and Courvalin, P., Modes and Modulations of Antibiotic Resistance Gene Expression, Clin. Microbiol. Rev., 2007, vol. 20, no. 1, pp. 79–114.

    Article  PubMed  CAS  Google Scholar 

  4. Dupont, M., James, C.E., Chevalier, J., and Pagés, J.M., An Early Response to Environmental Stress Involves Regulation of OmpX and OmpF, Two Enterobacterial Outer Membrane Pore-Forming Proteins, Antimicrob. Agents Chemother., 2007, vol. 51, no. 9, pp. 3190–3198.

    Article  PubMed  CAS  Google Scholar 

  5. Samartzidou, H. and Delcour, A.H., Excretion of Endogenous Cadaverine Leads to a Decrease in Porin-Mediated Outer Membrane Permeability, J. Bacteriol., 1999, vol. 181, no. 3, pp. 791–798.

    PubMed  CAS  Google Scholar 

  6. Meng, S.Y. and Bennett, G.N., Regulation of the Escherichia coli cad Operon: Location of a Site Required for Acid Induction, J. Bacteriol., 1992, vol. 174, no. 8, pp. 2670–2678.

    PubMed  CAS  Google Scholar 

  7. Yamamoto, Y., Miwa, Y., Miyoshi, K., Furuyama, J., and Ohmori, H., The Escherichia coli ldcC Gene Encodes Another Lysine Decarboxylase, Probably a Constitutive Enzyme, Genes. Genet. Syst, 1997, vol. 72, no. 3, pp. 167–172.

    Article  PubMed  CAS  Google Scholar 

  8. Tkachenko, A.G., Pozhidaeva, O.N., and Shumkov, M.S., Role of Polyamines in Formation of Multiple Antibiotic Resistance of Escherichia coli under Stress Conditions, Biokhimiya, 2006, vol. 71, no. 9, pp. 1287–1296 [Biochemistry (Moscow) (Engl. Transl.), vol. 71, no. 9, pp. 1042–1050].

    Google Scholar 

  9. Chen, G., Patten, C.L., and Schellhorn, H.E., Controlled Expression of an RpoS Antisense RNA Can Inhibit RpoS Function in Escherichia coli, Antimicrob. Agents Chemother., 2003, vol. 47, no. 11, pp. 3485–3493.

    Article  PubMed  CAS  Google Scholar 

  10. Lange, R. and Hengge-Aronis, R., The Cellular Concentration of the Sigma S Subunit of RNA Polymerase in Escherichia coli Is Controlled at the Levels of Transcription, Translation, and Protein Stability, Genes Dev., 1994, vol. 8, no. 13, pp. 1600–1612.

    Article  PubMed  CAS  Google Scholar 

  11. Ding, H. and Demple, B., Thiol-Mediated Disassembly and Reassembly of [2Fe-2S] Clusters in the Redox-Regulated Transcription Factor SoxR, Biochemistry, 1998, vol. 37, no. 49, pp. 17280–17286.

    Article  PubMed  CAS  Google Scholar 

  12. Miller, J.H., Experiments in Molecular Genetics, New York: Cold Spring Harbor, 1992.

    Google Scholar 

  13. Lemonnier, M. and Lane, D., Expression of the Second Lysine Decarboxylase Gene of Escherichia coli, Microbiology (UK), 1998, vol. 144, pp. 751–760.

    Article  CAS  Google Scholar 

  14. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.

    PubMed  CAS  Google Scholar 

  15. Chudinov, A.A., Chudinova, L.A., and Korobov, V.P., Method for Determination of Low-Molecular Oligoamines in Biological Materials, Vopr. Med. Khim., 1984, vol. 30, no. 4, pp. 127–132.

    PubMed  CAS  Google Scholar 

  16. Metodicheskie ukazaniya po opredeleniyu chuvstvitel’nosti mikroorganizmov k antibikterial’nym preparatam: Metodicheskie ukazaniya (Instructions for Determination of Microbial Sensitivity to Antibacterial Preparations), Moscow: Federal’nyi tsentr Gossanepidnadzora Minzdrava Rossii, 2004.

  17. Kikuchi, Y., Kurahashi, O., Nagano, T., and Kamio, Y., RpoS-Dependent Expression of the Second Lysine Decarboxylase Gene in Escherichia coli, Boisci. Biotechnol. Biochem., 1998, vol. 62, no. 6, pp. 1267–1270.

    Article  CAS  Google Scholar 

  18. Koski, P. and Vaara, M., Polyamines as Constituents of the Outer Membranes of Escherichia coli and Salmonella typhimurium, J. Bacteriol., 1991, vol. 173, no. 12, pp. 3695–3699.

    PubMed  CAS  Google Scholar 

  19. Iyer, R. and Delcour, A.H., Complex Inhibition of OmpF and OmpC Bacterial Porins by Polyamines, J. Biol. Chem., 1997, vol. 272, pp. 18595–18601.

    Article  PubMed  CAS  Google Scholar 

  20. Tkachenko, A.G. and Chudinov, A.A., Changes in the Polyamine Pool in the Course of Transition from Anaerobic to Aerobic Conditions and Localization of the Relevant Synthetic Enzymes in Escherichia coli Cells, Mikrobiologiya, 1989, vol. 58, no. 6, pp. 885–891.

    CAS  Google Scholar 

  21. Neves, P., Berkane, E., Gameiro, P., Winterhalter, M., and deCastro, B., Interaction between Quinolones Antibiotics and Bacterial Outer Membrane Porin OmpF, Biophys. Chem., 2005, vol. 113, no. 2, pp. 123–128.

    Article  PubMed  CAS  Google Scholar 

  22. Chevalier, J., Mallea, M., and Pages, J.M., Comparative Aspects of the Diffusion of Norfloxacin, Cefepime and Spermine through the F Porin Channel of Enterobacter cloacae, Biochem. J., 2000, vol. 348, pp. 223–227.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Tkachenko.

Additional information

Original Russian Text © A.V. Akhova, A.G. Tkachenko, 2009, published in Mikrobiologiya, 2009, Vol. 78, No. 5, pp.636–640.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhova, A.V., Tkachenko, A.G. Lysine decarboxylase activity as a factor of fluoroquinolone resistance in Escherichia coli . Microbiology 78, 575–579 (2009). https://doi.org/10.1134/S0026261709050075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261709050075

Key words

Navigation