Skip to main content
Log in

Phenotypic variability in Azospirillum brasilense strains Sp7 and Sp245: Association with dormancy and characteristics of the variants

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The state of metabolic dormancy in diazotrophic bacteria Azospirillum brasilense Sp7 (non-endophytic strain) and Sp245 (endophytic strain) was found to be associated with phenotypic variability. The latter manifested itself in the extension of the spectrum of A. brasilense phenotypic variants resulting from plating of cyst-like resting cells (CRC) on solid media and was more pronounced in strain Sp7. The major colony’s morphological variants of strain Sp7 were (1) the dominant S type; (2) the highly pigmented Pg type; (3) the R type; (4) the Sm type, forming small colonies; and (5) the Sg type, forming segmented colonies. In addition to their colony morphology, the variants differed in the phenotype stability during transfers on the standard solid medium and in their motility in semisolid agar. The occurrence frequency of the phenotypic variants depended on the conditions and duration of incubation (storage) of the CRC of strain Sp7, as well as on heat treatment (at 55 and 60°C for 10 min) of the cells prior to inoculation. The maximum frequency of S → Pg transitions (up to 74%) was observed during the germination of CRC stored in a spent culture medium at −20°C for 4 months; the maximum frequency (up to 100%) of S → Sm transitions was observed after inoculation of the CRC subjected to heat treatment. The Pg variants were the most stable, whereas other types reverted rapidly to the S or Pg variant. The S variant grown in semisolid agar exhibited the mixed type of motility (Swa+Gri+, swarming and migration in the form of microcolonies); the Pg and Sg variants showed the Swa+Gri (swarming) phenotype and the Sm variant was nonmotile (SwaGri phenotype). The spectrum of phenotypic variants of the endophytic strain Sp245 was narrower than that of strain Sp7 and was represented by S, Sm, and M (mucoid) variants that differed in the patterns of cell motility: the dominant S type displayed the swarming pattern (Swa+Gri), the mucoid M type showed the mixed type (Swa+Gri+) of motility, and the Sm variant was nonmotile. The differences between the nonendophytic strain Sp7 and the endophytic strain Sp245 in their capacity for phenotypic dissociation and cell motility in semisolid media may reflect their ability to adapt to changing ambient conditions and specificity of plant-microbial interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steenhoudt, O. and Vanderleyden, J., Azospirillum, a Free-Living Nitrogen-Fixing Bacterium Closely Associated with Grasses: Genetic, Biochemical and Ecological Aspects, FEMS Microbiol. Rev., 2000, vol. 24, no. 4, pp. 487–506.

    Article  PubMed  CAS  Google Scholar 

  2. Bashan, Y., Holguin, G., and Bashan, L.E., Azospirillum-Plant: Physiological, Molecular, Agricultural, and Environmental Advances (1997–2003), Can. J. Microbiol., 2004, vol. 50, pp. 521–577.

    Article  PubMed  CAS  Google Scholar 

  3. Molekulyarnye osnovy vzaimootnoshenii assotsiativnykh mikroorganizmov s rasteniyami (Molecular Basis of the Interactions between Associated Microorganisms and Plants), Ignatov, V.V., Ed., Moscow: Nauka, 2005, p. 262.

    Google Scholar 

  4. Baldani, J.I. and Baldani, V.L.D., History on the Biological Nitrogen Fixation Research in Graminaceous Plants: Special Emphasis on the Brazilian Experience, Anals da Academia Brasileira de Ciências, 2005, vol. 77, no. 3, pp. 549–579.

    CAS  Google Scholar 

  5. Sadasivan, L. and Neyra, C.A., Flocculation in Azospirillum brasilense and A. lipoferum: Exopolysaccharides and Cyst Formation, J. Bacteriol., 1985, vol. 163, no. 2, pp. 716–723.

    PubMed  CAS  Google Scholar 

  6. Sadasivan, L. and Neyra, C.A., Cyst Production and Brown Pigment Formation in Aging Cultures of Azospirillum brasilense ATCC 29145, J. Bacteriol., 1987, vol. 169, no. 4, pp. 1670–1677.

    PubMed  CAS  Google Scholar 

  7. Mulyukin, A.L., Suzina, N.E., Pogorelova, A.Yu., Antonyuk, L.P., Duda, V.I., and El’-Registan, G.I., Diverse Morphological Types of Dormant Cells and Conditions for Their Formation in Azospirillum brasilense, Mikrobiologiya, 2009, vol. 78, no. 1, pp. 42–51 [Microbiology (Engl. Transl.), vol. 78, no. 1, pp. 33–41].

    Google Scholar 

  8. El’-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Suzina, N.E., Gal’chenko, V.F., and Duda, V.I., Adaptogenic Functions of Extracellular Autoregulators of Microorganisms, Mikrobiologiya, 2006, vol. 75, no. 4, pp. 446–456 [Microbiology (Engl. Transl.), vol. 75, no. 4, pp. 380–389].

    Google Scholar 

  9. Doroshenko, E.V., Loiko, N.G., Il’inskaya, O.N., Kolpakov, A.I., Gornova, I.V., and El’-Registan, G.I., Characterization of Bacillus cereus Dissociants, Mikrobiologiya, 2001, vol. 70, no. 6, pp. 811–819 [Microbiology (Engl. Transl.), vol. 70, no. 6, pp. 698–705].

    CAS  Google Scholar 

  10. Il’inskaya, O.N., Kolpakov, A.I., Shmidt, M.A., Doroshenko, E.V., Mulyukin, A.L., and El’-Registan, G.I., The Role of Bacterial Growth Autoregulators (Alkyl Hydroxybenzenes) in the Response of Staphylococci to Stresses, Mikrobiologiya, 2002, vol. 71, no. 1, pp. 23–29 [Microbiology (Engl. Transl.), vol. 71, no. 1, pp. 18–23].

    Google Scholar 

  11. Mulyukin, A.L., Kozlova, A.N., and El’-Registan, G.I., Properties of the Phenotypic Variants of Pseudomonas aurantiaca and P. fluorescens, Mikrobiologiya, 2008, vol. 77, no. 6, pp. 766–776 [Microbiology (Engl. Transl.), vol. 77, no. 6, pp. 681–690].

    Google Scholar 

  12. Matveev, V.Yu., Petrova, L.P., Zhuravleva, E.A., and Panasenko, V.I., Dissociation in Azospirillum brasilense Sp7 Cultures, Mol. Genet., Mikrobiol., Virusol., 1987, no. 8, pp. 16–18.

  13. Alexandre, G. and Bally, R., Emergence of a Laccase-Positive Variant of Azospirillum lipoferum Occurs via a Two-Step Phenotypic Switching Process, FEMS Microbiol. Letts., 1999, vol. 174, pp. 371–378.

    Article  CAS  Google Scholar 

  14. Alexandre, G., Rohr, R., and Bally, R., A Phase Variant of Azospirillum lipoferum Lacks a Polar Flagellum and Constitutively Expresses Mechanosensing Lateral Flagella, Appl. Environ. Microbiol., 1999, vol. 65, no. 10, pp. 4701–4704.

    PubMed  CAS  Google Scholar 

  15. Shelud’ko, A.V. and Katsy, E.I., Formation of Polar Bundles of Pili and the Behavior of Azospirillum brasilense Cells in a Semiliquid Agar, Mikrobiologiya, 2001, vol. 70, no. 5, pp. 1–6 [Microbiology (Engl. Transl.), vol. 70, no. 5, pp. 570–575].

    Google Scholar 

  16. Matora, L.Yu., Serebrennikova, O.B., Petrova, L.P., Burygin, G.L., and Shchegolev, S.Yu., Atypical R-S Dissociation in Azospirillum brasilense, Mikrobiologiya, 2003, vol. 72, no. 1, pp. 60–63 [Microbiology (Engl. Transl.), vol. 72, no. 1, pp. 48–51].

    Google Scholar 

  17. Vial, L., Lavire, C., Mavingui, P., Blaha, D., Haurat, J., Moënne-Loccoz, Y., Bally, R., and Wisniewski-Dyé, F., Phase Variation and Genomic Architecture Changes in Azospirillum, J. Bacteriol., 2006, vol. 188, no. 15, pp. 5364–5373.

    Article  PubMed  CAS  Google Scholar 

  18. Il’inskaya, O.N., Kolpakov, A.I., Zelenin, P.V., Kruglova, Z.D., Choidash, B., Doroshenko, E.V., Mulyukin, A.L., and El’-Registan, G.I., The Effect of Anabiosis Autoinducers on the Bacterial Genome, Mikrobiologiya, 2002, vol. 71, no. 2, pp. 194–199 [Microbiology (Engl. Transl.), vol. 71, no. 2, pp. 164–168].

    Google Scholar 

  19. Khabibullin, S.S., Nikolaev, Yu.A., Loiko, N.G., Golod, N.A., Mil’ko, E.S., Voeikova, T.A., and El’-Registan, G.I., Autoregulation of Phenotypic Dissociation in Bacillus licheniformis, Zh. Mikrobiol., Epidemiol. Immunobiol., 2006, no. 6, pp. 9–13.

  20. Setlow, P., Mechanisms for the Prevention of Damage to the DNA in Spores of Bacillus Species, Annu. Rev. Microbiol., 1995, vol. 49, pp. 29–54.

    Article  PubMed  CAS  Google Scholar 

  21. Frenkiel-Krispin, D., Levin-Zaidman, S., Shimoni, E., Wolf, S.A., Wachtel, E.T., Arad, T., Finkel, S.E., Kolter, R., and Minsky, A., Regulated Phase Transitions of Bacterial Chromatin: a Non-Enzymatic Pathway for Generic DNA Protection, The EMBO J., 2001, vol. 20, pp. 1184–1191.

    Article  CAS  Google Scholar 

  22. Davydova, O.K., Deryabin, D.G., Nikiyan, A.N., and El’-Registan, G.I., Mechanisms of Interaction between DNA and Chemical Analogues of Microbial Anabiosis Autoinducers, Mikrobiologiya, 2005, vol. 74, no. 5, pp. 616–625 [Microbiology (Engl. Transl.), vol. 74, no. 5, pp. 533–541].

    CAS  Google Scholar 

  23. Suzina, N.E., Mulyukin, A.L., Kozlova, A.N., Shorokhova, A.P., Dmitriev, V.V., Barinova, E.S., Mokhova, O.N., El’-Registan, G.I., and Duda, V.I., Ultrastructure of Resting Cells of Some Non-Spore-Forming Bacteria, Mikrobiologiya, 2004, vol. 73, no. 4, pp. 516–529 [Microbiology (Engl. Transl.), vol. 73, no. 4, pp. 435–447].

    CAS  Google Scholar 

  24. Soina, V.S., Mulyukin, A.L., Demkina, E.V., Vorobyova, E.A., and El-Registan, G.I., The Structure of Resting Bacterial Populations in Soil and Subsoil Permafrost, Astrobiology, 2004, vol. 4, pp. 345–358.

    Article  PubMed  Google Scholar 

  25. Volkogon, V.V., Mamchur, A.E., Lemeshko, S.V., and Minyailo, V.G., Azospirilla, Endophytes of Gramineae Plants, Mikrobiologich. Zhurnal, 1995, vol. 57, no. 1, pp. 14–19.

    Google Scholar 

  26. Antonyuk, L.P., Kamnev, A.A., Chernyshev, A.V., and Ignatov, V.V., Formation of Struvite Crystals upon Cultivation of the Soil Bacterium Azospirillum brasilense, Doklady Rossiiskoi Akademii Nauk, 1996, vol. 350, no. 3, pp. 421–423 [Doklady Biol. Sci., vol. 350, pp. 547–549].

    CAS  Google Scholar 

  27. Kamnev, A.A., Antonyuk, L.P., Colina, M., Chernyshev, A.V., and Ignatov, V.V., Investigation of a Microbially Produced Structural Modification of Magnesium-Ammonium Orthophosphate, Monatshefte für Chemie, 1999, vol. 130, no. 12, pp. 1431–1442.

    CAS  Google Scholar 

  28. van der Woude, M.W. and Baumler, A.J., Phase and Antigenic Variation in Bacteria, Clin. Microbiol. Rev., 2004, vol. 17, pp. 581–611.

    Article  PubMed  Google Scholar 

  29. Shelud’ko, A.V., Kulibyakina, O.V., Shirokov, A.A., Petrova, L.P., Matora, L.Yu., and Katsy, E.I., The Effect of Mutations Affecting Synthesis of Lipopolysaccharides and Calcofluor-Binding Polysaccharides on Biofilm Formation by Azospirillum brasilense, Mikrobiologiya, 2008, vol. 77, no. 3, pp. 358–363 [Microbiology (Engl. Transl.), vol. 77, no. 3, pp. 313–317].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Mulyukin.

Additional information

Original Russian Text © A.Yu. Pogorelova, A.L. Mulyukin, L. P. Antonyuk, V.F. Galchenko, G.I. El’-Registan, 2009, published in Mikrobiologiya, 2009, Vol. 78, No. 5, pp. 618–628.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogorelova, A.Y., Mulyukin, A.L., Antonyuk, L.P. et al. Phenotypic variability in Azospirillum brasilense strains Sp7 and Sp245: Association with dormancy and characteristics of the variants. Microbiology 78, 559–568 (2009). https://doi.org/10.1134/S0026261709050051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261709050051

Key words

Navigation