Advertisement

Microbiology

, Volume 78, Issue 4, pp 483–491 | Cite as

Bacteria of the sulfur cycle in the sediments of gold mine tailings, Kuznetsk Basin, Russia

  • O. V. Karnachuk
  • A. L. Gerasimchuk
  • D. Banks
  • B. Frengstad
  • G. A. Stykon
  • Z. L. Tikhonova
  • A. Kaksonen
  • J. Puhakka
  • A. S. Yanenko
  • N. V. Pimenov
Experimental Articles

Abstract

The number and diversity of culturable microorganisms involved in sulfur oxidation and sulfate reduction were investigated in the oxidized sediments of gold mine tailings, Kuznetsk Basin, Russia. The sediments had a low pH (2.4–2.8), high SO 4 2− content (up to 22 g/l), and high concentrations of dissolved metals. The arsenic content was as high as 1.9 g/l. Bacterial phylogeny in microcosms was investigated by amplification of 16S rRNA gene fragments with subsequent denaturing gradient gel electrophoresis (DGGE). Spore-forming bacteria Desulfosporosinus were the only bacteria revealed for which the capacity for dissimilatory sulfate reduction is known. Strain Desulfosporosinus sp. DB was obtained in pure culture, and it was phylogenetically remote from other cultured and uncultured members of the genus. No sulfate-reducing members of the Deltaproteobacteria were detected. The Firmicutes members were the most numerous phylotypes in the microcosms, including a separate cluster with the similarity to Pelotomaculum not exceeding 94%. Acidithiobacillus ferrooxidans and A. caldus were found in anaerobic and microaerophilic microcosms. The number of sulfate reducers did not exceed 9.5 × 102 cells/ml.

Key words

denaturing gradient gel electrophoresis acid mine drainage sulfate-reducing bacteria gold mine tailings Acidithiobacillus Desulfosporosinus Pelotomaculum Thermincola 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blowes, D.W., Ptacek, C.J., and Weisener, C.G., The Geochemistry of Acid Mine Drainage, Treatise on Geochemistry, 2003, vol. 9, pp. 149–204.CrossRefGoogle Scholar
  2. 2.
    Johnson, B., Biological Removal of Sulfurous Compounds from Inorganic Wastewaters, in Environmental technologies to Treat Sulfur Pollution: Principles and Engineering, Lens, P.N.L. and Hulshoff, L., Eds., London: IWA Publishing, 2000, pp. 175–205.Google Scholar
  3. 3.
    Gerashchenko, A.A., Analysis of the Mineral Source Base of Gold in the Kemerovo District, in Zoloto Kuzbassa (Gold of the Kuznetsk Basin), Kemerovo: Kemerovskii poligrafkombinat, 2000, pp. 69–213.Google Scholar
  4. 4.
    Widdel, F.F and Bak, R., Gram-Negative Mesophilic Sulfate-Reducing Bacteria, in The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Balows, A., et al., Eds., Berlin: Springer-Verlag, 1992, vol. 4, pp. 3352–3378.Google Scholar
  5. 5.
    Muyzer, G., Hottenträger, S., Teske, A., and Wawer, C., Denaturing Gradient Gel Electrophoresis of PCRAmplified 16S rDNA-a New Molecular Approach to Analyze the Genetic Diversity of Mixed Microbial Communities, in Molecular Microbial Ecology Manual, Akkermans, A.D.L., et al., Eds., Dordrecht: Kluwer Academic Publishers, 1996, pp. 1–23.Google Scholar
  6. 6.
    DeLong, E.F., Archaea in Costal Marine Environments, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 5685–5689.PubMedCrossRefGoogle Scholar
  7. 7.
    Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., 16S Ribosomal DNA Amplification for Phylogenetic Study, J. Bacteriol., 1991, vol. 173, pp. 697–703.PubMedGoogle Scholar
  8. 8.
    Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: a New Generation of Protein Database Search Programs, Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402.PubMedCrossRefGoogle Scholar
  9. 9.
    Hamamura, N., Olson, S.H., Ward, D.M., and Inskeep, W.P., Diversity and Functional Analysis of Bacterial Communities Associated with Natural Hydrocarbon Seeps in Acidic Soils at Rainbow Springs, Yellowstone National Park, Appl. Environ. Microbiol., 2005, vol. 71, pp. 5943–5950.PubMedCrossRefGoogle Scholar
  10. 10.
    Garcia-Moyano, A., González-Toril, E., Aguilera, A., and Amils, R., Prokaryotic Community Composition and Ecology of Floating Macroscopic Filaments from an Extreme Acidic Environment, Rio Tinto (SW, Spain), Syst. Appl. Microbiol, 2007, vol. 30, pp. 601–614.PubMedCrossRefGoogle Scholar
  11. 11.
    Labrenz, M. and Banfield, J.F., Sulfate-Reducing Bacteria-Dominated Biofilms That Precipitate ZnS in a Subsurface Circumneutral-pH Mine Drainage System, Microbial Ecol., 2004, vol. 47, pp. 205–217.Google Scholar
  12. 12.
    Dopson, M. and Lindström, E.B., Potential Role of Thiobacillus caldus in Arsenopyrite Bioleaching, Appl. Environ. Microbiol., 1999, vol. 65, pp. 36–40.PubMedGoogle Scholar
  13. 13.
    Stahl, D.A., Fishbain, S., Klein, M., Baker, B.J., and Wagner, M., Origins and Diversification of Sulfate-Respiring Microorganisms, Antonie van Leeuwenhoek, 2002, vol. 81, pp. 189–195.PubMedCrossRefGoogle Scholar
  14. 14.
    Karnachuk, O.V., Pimenov, N.V., Yusupov, S.K., Frank, Y.A., Kaksonen, A.H., Puhakka, J.A., Ivanov, M.V., Lindström, E.B., and Tuovinen, O.H., Sulfate Reduction Potential in Sediments in the Norilsk Mining Area, Northern Siberia, Geomicrobiol. J., 2005, vol. 22, pp. 11–25.CrossRefGoogle Scholar
  15. 15.
    Johnson, B.D. and Hallberg, K.B., The Microbiology of Acidic Mine Waters, Res. Microbiol, 2003, vol. 154, pp. 466–473.PubMedCrossRefGoogle Scholar
  16. 16.
    Nevin, K.P., Finneran, K.T., and Lovley, D.R., Microorganisms Associated with Uranium Bioremediation in a High-Salinity Subsurface Sediment, Appl. Environ. Microbiol., 2003, vol. 69, pp. 3672–3675.PubMedCrossRefGoogle Scholar
  17. 17.
    Petrie, L., North, N.N., Dollhopf, S.L., Balkwill, D.L., and Kostka, J.E., Enumeration and Characterization of Iron(III)-Reducing Microbial Communities from Acidic Subsurface Sediments Contaminated with Uranium(VI), Appl. Environ. Microbiol., 2003, vol. 69, pp. 7467–7479.PubMedCrossRefGoogle Scholar
  18. 18.
    Saunders, J.A., Lee, M.-K., Wolf, L.W., Morton, C.M., Feng, Y., Thomson, I., and Park, S., Geochemical, Microbiological, and Geophysical Assessments of Anaerobic Immobilization of Heavy Metals, Bioremediation J, 2005, vol. 9, pp. 33–48.CrossRefGoogle Scholar
  19. 19.
    Newman, D.K., Kennedy, E.K., Coates, J.D., Ahmann, D., Ellis, D.J., Lovley, D.R., and Morel, F.M.M., Dissimilatory Arsenate and Sulfate Reduction in Desulfotomaculum auripigmentum sp. nov, Arch. Microbiol., 1997, vol. 168, pp. 380–388.PubMedCrossRefGoogle Scholar
  20. 20.
    Sokolova, T.G., Kostrikina, N.A., Chernyh, N.A., Kolganova, T.V., Tourova, T.P., and Bonch-Osmolovskaya, E.A., Thermincola carboxydiphila gen. nov., sp. nov., a Novel Anaerobic, Carboxydotrophic, Hydrogenogenic Bacterium from a Hot Spring of the Lake Baikal Area, Int. J. Syst. Evol. Microbiol, 2005, vol. 55, pp. 2069–2073.PubMedCrossRefGoogle Scholar
  21. 21.
    Zavarzina, D.G., Sokolova, T.G., Tourova, T.P., Chernyh, N.A., Kostrikina, N.A., and Bonch-Osmolovskaya, E.A., Thermincola ferriacetica sp. nov., a New Anaerobic, Thermophilic, Facultatively Chemolithoautotrophic Bacterium Capable of Dissimilatory Fe(III) Reduction, Extremophiles, 2007, vol. 11, pp. 1–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Ohmura, N., Sasaki, K., Matsumoto, N., and Saiki, H., Anaerobic Respiration Using Fe(3+), S(0), and H(2) in the Chemolithoautotrophic Bacterium Acidithiobacillus ferrooxidans, J. Bacteriol., 2002, vol. 184, pp. 2081–2087.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • O. V. Karnachuk
    • 1
  • A. L. Gerasimchuk
    • 1
  • D. Banks
    • 2
  • B. Frengstad
    • 3
  • G. A. Stykon
    • 1
  • Z. L. Tikhonova
    • 1
  • A. Kaksonen
    • 4
  • J. Puhakka
    • 4
  • A. S. Yanenko
    • 5
  • N. V. Pimenov
    • 6
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Newcastle UniversityNewcastleUK
  3. 3.Norwegian Geological SurveyTrondheimNorway
  4. 4.Tampere University of TechnologyTampereFinland
  5. 5.State Research Institute for Genetics and Selection of Industrial MicroorganismsMoscowRussia
  6. 6.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations