Skip to main content
Log in

Intrapopulation heterogeneity of the fluorescence parameters of the marine plankton alga Thalassiosira weissflogii at various nitrogen levels

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Fluorescence of the marine alga Thalassiosira weissflogii (Grunow) Fryxell et Hasle with open (F o ) and closed (F m ) reaction centers of photosystem 2 (PS 2) and its relative variable fluorescence (F v/F m ) were measured at various levels of inorganic nitrogen. A significant heterogeneity of the population in terms of these parameters was revealed. Some cells within the population were more sensitive to nitrogen deficiency, and their photosynthetic apparatus was disrupted to a greater extent. The cells within a population also differed in terms of their ability to recover after incubation at low nitrogen levels. Enhancement of nitrogen deficiency resulted in an increase in the variability of the F o and F v/F m values of the cells. Fluorescence variability decreased at a less pronounced deficiency. Fluorescence variability should be taken into consideration in the studies concerning responses of algae to changes in nutrient contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young, E.B. and Beardall, J., Rapid Ammonium- and Nitrate-Induced Perturbations to Chlorophyll a Fluorescence in Nitrogen-Stressed Dunaliella tertiolecta (Chlorophyta), J. Phycology, 2003, vol. 39, pp. 332–342.

    CAS  Google Scholar 

  2. Kolber, Z., Zehr, J., and Falkowski, P.G., Effects of Growth Irradiance and Nitrogen Limitation on Photosynthetic Energy Conversion in Photosystem II, Plant Physiol., 1988, vol. 88, pp. 923–929.

    Article  PubMed  CAS  Google Scholar 

  3. Geider, R.J., Roche, J., Greene, R., and Olaizola, M., Response of the Photosynthetic Apparatus of Phaeodactylum tricornutum to Nitrate, Phosphate, or Iron Starvation, J. Phycology, 1993, vol. 29, pp. 755–766.

    Article  CAS  Google Scholar 

  4. Lippemeier, S., Hintze, R., Vanselow, K.H., Harting, P., and Colijn, F., In-Line Recording of PAM Fluorescence of Phytoplankton as a New Tool for Studying Effects of Fluctuating Nutrient Supply on Photosynthesis, Eur. J. Phycology, 2001, vol. 36, pp. 89–100.

    Article  Google Scholar 

  5. Il’yash, L.V., Belevich, T.A., Ulanova, A.Yu., and Matorin, D.N., Fluorescence Parameters of Marine Planktonic Algae Assimilating Organic Nitrogen, Vestnik Moskovsk. Un-ta, Ser. 16, Biology, 2007, no. 3, pp. 17–22.

  6. Young, E.B. and Beardall, J., Photosynthetic Function in Dunaliella tertiolecta (Chlorophyta) During a Nitrogen Starvation and Recovery Cycle, J. Phycology, 2003, vol. 39, pp. 897–905.

    CAS  Google Scholar 

  7. Pogosyan, S.I., Volkova, E.V., Kazimirko, Yu.V., Maksimov, V.N., and Rubin, A.B., Changes in the Photosynthetic Apparatus of Individual Cells of the Intact Microalga Ankistrodemus falcatus Induced by UV Radiation, Dokl. Akad. Nauk, 1998, vol. 363, pp. 690–693 [Dokl. Biophys. (Engl. Transl.), vol. 63, pp. 93–96].

    CAS  Google Scholar 

  8. Voronova, E.N., Volkova, E.V., Kazimirko, Yu.V., Chivkunova, O.B., Merzlyak, M.N., Pogosyan, S.I., and Rubin, A.B., Response of the Photosynthetic Apparatus of the Diatom Thallassiosira weisflogii to High Irradiance Light, Fiziol. Rast, 2002, vol. 49, no. 3, pp. 350–359 [Russ. J. Plant Physiol. (Engl. Transl.), vol. 49, no. 3, pp. 311–319.

    Google Scholar 

  9. Pogosyan, S.I., Sivchenko, M.A., Maximov, V.N., and Ostrowska, M., Physiological Heterogenety of an Algal Population: Classification of Scenedesmus quadricauda Ceonobia by the Features of Their Photosynthetic Apparatus, Oceanologia, 1997, vol. 39, pp. 163–175.

    Google Scholar 

  10. Pogosyan, S.I. and Matorin, D.N., Variability in the State of the Photosynthetic System of the Black Sea Phytoplankton, Oceanologia, 2005, vol. 45, no. 1, pp. 139–148.

    Google Scholar 

  11. Peloquin, J.A., Smith, W.O.Jr., The Role of Phytoplankton Size on Photochemical Recovery During the Southern Ocean Experiment, J. Phycology, 2006, vol. 42, pp. 1016–1027.

    Article  Google Scholar 

  12. Guillard, R.R.L. and Ryther, J.N., Studies on Marine Diatoms. I. Cyclotella nana Hustedt and Detjnula confervacea (Cleve) Gran., Can. J. Microbiol., 1962, vol. 8, pp. 229–239.

    Article  PubMed  CAS  Google Scholar 

  13. Falkowski, P.G. and Raven, J.A., Aquatic photosynthesis, Malden, Massachusetts: Blackwell Science, 1997.

    Google Scholar 

  14. Lomas, M., Glibert P.M. Comparison of Nitrate Uptake, Storage, and Reduction in Marine Diatoms and Flagellates, J. Phycology, 2000, vol. 36, pp. 903–913.

    Article  CAS  Google Scholar 

  15. Yin, K., Influence of Monsoons and Oceanographic Processes on Red Tides in Hong Kong Waters, Mar. Ecol. Progr. Ser., 2003, vol. 262, pp. 27–41.

    Article  Google Scholar 

  16. Falkowski, P.G., Sukenik, A., and Herzig, R., Nitrogen Limitation in Isochysis galbana (Haptophycea). II. Relative Abundance of Chloroplast Proteins, J. Phycology, 1989, vol. 25, pp. 471–478.

    Article  CAS  Google Scholar 

  17. Vasil’ev, S.S., Arutyunyan, A.A., Cheremis, Yu.K., Pashchenko, V.Z., Venediktov, P.S., and Rubin, A.B., Attenuation Kinetics of Chlorophyll Picosecond Fluorescence in Mineral-Limited Chlorella Cells, Biofizika, 1986, vol. 31, pp. 27–30.

    Google Scholar 

  18. Vavilin, D.V., Matorin, D.N., Venediktov, P.S., and Rubin, A.B., Two Types of Photosystem 2 Inactive Centers in Chlorella Grown under Mineral Nitrogen Deficiency, Fiziol. Rast, 1999, vol. 46, no. 5, pp. 679–685.

    Google Scholar 

  19. Rynearson, T.A. and Armbrust, E.V., Genetic Differentiation Among Populations of the Planktonic Marine Diatom Ditylum brightwellii (Bacillariophyceae), J. Phycology, 2004, vol. 40, pp. 34–43.

    Google Scholar 

  20. Rynearson, T.A. and Armbrust, E.V., Maintenance of Clonal Diversity During a Spring Bloom of the Centric Diatom Ditylum brightwellii, Mol. Ecol., 2005, vol. 14, pp. 1631–1640.

    Article  PubMed  Google Scholar 

  21. Iglesias-Rodriguez, M.D., Schofield, O.M., Batley, J., Medlin, L.K., and Hayes, P.K., Intraspecific Genetic Diversity in the Marine Coccolithophore Emiliania huxleyi (Phymnesiophyceace): the Use of Microsatellite Analysis in Marine Phytoplankton Population Studies, J. Phycology, 2006, vol. 42, pp. 526–536.

    Article  CAS  Google Scholar 

  22. Lopez-Rodas, V., Agrelo, M., Carrillo, E., Ferrero, L., Larrouri A., Martin-Otero, L., and Costas, E., Resistance of Microalgae to Modern Water Contaminants as the Result of Rare Spontaneous Mutations, Eur. J. Phycology, 2001, vol. 36, pp. 179–190.

    Article  Google Scholar 

  23. Pogosyan, S.I., Matorin, D.N., Antal, T.K., Kazimirko, Yu.V., Vostokov, S.V., and Rubin, A.B., Application of a Complex of Fluorimetric Methods for Assessment of the State of the Marine Phytoplanktonic Community, in Kompleksnye issledovaniya severo-vostochnoi chasti Chernogo morya, (Comprehensive Research of Northeastern Black Sea), Zatsepin, A.G., and Flint, M.V., Eds., Moscow: Nauka, 2001, pp. 436–447.

    Google Scholar 

  24. Veldhuis, M.W., Kraay, G.W., and Timmermans, K.R., Cell Death in Phytoplankton: Correlation Between Changes in Membrane Permeability, Photosynthetic Activity, Pigmentation and Growth, Eur. J. Phycology, 2001, vol. 36, pp. 167–177.

    Article  Google Scholar 

  25. Berges, J.A. and Falkowski, P.G., Physiological Stress and Cell Death in Marine Phytoplankton: Induction of Proteases in Responce to Nitrogen or Light Limitation, Limnol. Oceanogr., 1998, vol. 43, pp. 129–135.

    CAS  Google Scholar 

  26. Brussaard, C.D.P., Noordeloos, A.A.M., and Riegman, R., Autolysis Kinetics of the Marine Diatom Ditylum brightwellii (Bacillariophyceae) Under Nitrogen and Phosphorus Limitation and Starvation, J. Phycology, 1997, vol. 33, pp. 980–987.

    Article  Google Scholar 

  27. Lee, D.Y. and Rhee, G.Y., Kinetics of Cell Death in the Cyanobacterium Anabaena flos-aquae and the Production of Dissolved Organic Carbon, J. Phycology, 1997, vol. 33, pp. 991–998.

    Article  Google Scholar 

  28. Yarmolinsky, M.B., Programmed Cell Death in Bacterial Populations, Science, 1995, vol. 267, pp. 836–837.

    Article  PubMed  CAS  Google Scholar 

  29. Wheeler, P.A., Phytoplankton Nitrogen Metabolism, in Nitrogen in the Marine Environment, Carpenter, E.G. and Capone, D.G, Eds., New York: Academic Press, 1983, pp. 309–346.

    Google Scholar 

  30. Cheremis, Yu.K., Popova, A.V., Arutyunyan, A.A., and Venediktov, P.S., Effect of Mineral Deficiency on the Photosynthetic Apparatus of Chlorella, Fiziol. Rast, 1989.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Pogosyan.

Additional information

Original Russian Text © E.N. Voronova, L.V. Il’ash, S.I. Pogosyan, A.Yu. Ulanova, D. N. Matorin, Man-gi Cho, A.B. Rubin, 2009, published in Mikrobiologiya, 2009, Vol. 78, No. 4, pp. 469–478.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronova, E.N., Il’ash, L.V., Pogosyan, S.I. et al. Intrapopulation heterogeneity of the fluorescence parameters of the marine plankton alga Thalassiosira weissflogii at various nitrogen levels. Microbiology 78, 419–427 (2009). https://doi.org/10.1134/S0026261709040043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261709040043

Key words

Navigation