Skip to main content
Log in

Dormant forms of Micrococcus luteus and Arthrobacter globiformis not platable on standard media

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The colony-forming ability of long (3–9 months) incubated cystlike resting cells (CRC) of the nonspore-forming gram-positive bacteria Micrococcus luteus and Arthrobacter globiformis was studied in this work. The preservation of the CRC proliferative potential as assayed by plating on standard LB agar was shown to depend on the conditions of the formation of the dormant cells. In aged post-stationary cultures of micrococci and arthrobacters grown under carbon and phosphorus limitation the number of colony-forming units (CFU/ml) of CRC decreased in the course of 3–9 month incubation to the level of 106–107 CFU/ml. However, M. luteus CRC obtained under carbon and nitrogen limitation and A. globiformis CRC obtained under nitrogen limitation and starvation completely lost their ability to form colonies on standard solid medium after 4–6 months of incubation and turned into a ‘non-culturable’ (non-platable) state. In this case, the ratio of live cells in the population of M. luteus and A. globiformis ‘non-culturable’ CRCs (determined by the Live/Dead staining test) was 10–44% of the total cell number. To study the possible preservation of proliferative potential in non-platable CRCs, various methods of their reactivation were applied. Although preincubation of CRC suspensions in a buffer solution of 0.1 M K2HPO4 (pH 7.4) or in the presence of lysozyme (1 or 10 μg/ml) resulted in increased numbers of live cells (determined by the Live/Dead test) or in disruption of the cell conglomerates, it did not increase considerably the CFU titer on LB medium. Variations in the medium composition, such as addition of sodium pyruvate as an antioxidant or dilution of the medium, promoted the formation of macrocolonies by a small portion of nonplateable CRC of M. luteus (50−80 CFU/ml), whereas the number of the cells capable of microcolony formation (mCFU) was 1.8–6.8 × 105 mCFU/ml, exceeding the CFU titers by four orders of magnitude. The application of semisolid agar and the most probable number (MPN) method was the most efficient for determination of the mCFU titer, and an almost complete reversion of ‘non-culturable’ micrococcal CRCs to microcolony formation was observed (up to 2.3 × 107 mCFU/ml). The usefulness of diluted complete media for the restoration of the colony-forming ability of the dormant forms was confirmed in experiments with ‘nonculturable’ CRCs of A. globiformis. The development of special procedures and methods for determining actively proliferating cells not detected by ordinary methods is of great importance for advanced monitoring studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zvyagintsev, D.G., Gilichinskii, D.A., Blagodatskii, S.A., Vorob’eva, E.A., Khlebnikova, G.M., Arkhangelov, A.A., and Kudryavtseva, N.N., Duration of Microbial Preservation in Permanently Frozen Sediments and Buried Soils, Mikrobiologiya, 1985, vol. 54, no. 1, pp. 155–161.

    Google Scholar 

  2. Vorobyova, E., Soina, V., Gorlenko, M., Minkovskaya, N., Zalinova, N., Mamukelashvili, A., Gilichinsky, D., Rivkina, E., and Vishnivetskaya, T., The Deep Cold Biosphere: Facts and Hypothesis, FEMS Microbiol. Rev., 1997, vol. 20, pp. 277–290.

    Article  CAS  Google Scholar 

  3. Willerslev, E., Hansen, A.J., Rönn, R., Brand, T.B., Barnes, I., Wiuf, C., Gilichinsky, D., Mitchell, D., and Cooper, A., Long-Term Persistence of Bacterial DNA, Curr. Biol, 2004, vol. 14, no. 1, pp. 9–10.

    Article  CAS  Google Scholar 

  4. Vishnivetskaya, T., Petrova, M., Urbance, J., Ponder, M., Moyer, C., Gilichinsky, D., and Tiedje, J., Bacterial Community in Ancient Siberian Permafrost as Characterized by Culture and Culture-Independent Methods, Astrobiology, 2006, vol. 6, no. 3, pp. 400–414.

    Article  PubMed  CAS  Google Scholar 

  5. Demkin, V.A, Gugalinskaya, L.A., Alekseev, A.O. et al., Paleopochvy kak indikatory evolyutsii biosfery (Paleosoils as Indicators of Biosphere Evolution), Moscow: NIA-Priroda, Fond “Ionosfera”, 2007.

    Google Scholar 

  6. Soina, V.S., Mulyukin, A.L., Demkina, E.V., Vorobyova, E.A., and El-Registan, G.I., The Structure of Resting Microbial Populations in Soil and Subsoil Permafrost, Astrobiology, 2004, vol. 4, no. 3, pp. 348–358.

    Article  Google Scholar 

  7. Suzina, N.E., Mulyukin, A.L., Dmitriev, V.V., Nikolaev, Yu.A., Shorokhova, A.P., Bobkova, Yu.S., Barinova, E.S., Plakunov, V.K., El-Registan, G.I., and Duda, V.I., The Structural Bases of Long-Term Anabiosis in Non-Spore-Forming Bacteria, J. Adv. Space Res, 2006, vol. 38, pp. 1209–1219.

    Article  Google Scholar 

  8. Roszak, D.B. and Colwell, R.R., Survival Strategies of Bacteria in the Natural Environment, Microbiol.Rev, 1987, vol. 51, no. 3, pp. 365–379.

    PubMed  CAS  Google Scholar 

  9. Kaprelyants, A.S. and Kell, D.B., Dormancy in Stationary-Phase Cultures of Micrococcus luteus: Flow Cytometric Analysis of Starvation and Resuscitation, Appl. Environ. Microbiol., 1993, vol. 59, pp. 3187–3196.

    PubMed  CAS  Google Scholar 

  10. Votyakova, T.V., Kaprelyants, A.S., and Kell, D.B., Influence of Viable Cells on Resuscitation of Dormant Cells in Micrococcus luteus Cultures Held in Extended Stationary Phase, Appl. Environ. Microbiol., 1994, vol. 60, pp. 3284–3291.

    PubMed  CAS  Google Scholar 

  11. Mukamolova, G.V., Kaprelyants, A.S., Young, D.I., Young, M., and Kell, D.B., A Bacterial Cytokine, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 8916–8921.

    Article  PubMed  CAS  Google Scholar 

  12. Mukamolova, G.V., Murzin, A.G., Salina, E.G., Demina, G.R., Kell, D.B., Kaprelyants, A.S., and Young, M., Muralytic Activity of Micrococcus luteus Rpf and Its Relationship to Physiological Activity in Promoting Bacterial Growth and Resuscitation, Mol. Microbiol., 2006, vol. 59, pp. 84–98.

    Article  PubMed  CAS  Google Scholar 

  13. Mulyukin, A.L., Lusta, K.A., Gryaznova, M.N., Kozlova, A.N., Duzha, M.V., Duda, V.I., and El’-Registan, G.I., Formation of RestingCells by Bacillus cereus and Micrococcus luteus, Mikrobiologiya, 1996, vol. 65, no. 6, pp. 782–789 [Microbiology (Engl. Transl.), vol. 65, no. 6, pp. 683–689].

    CAS  Google Scholar 

  14. Demkina, E.V., Soina, V.S., El’-Registan, G.I., and Zvyagintsev, D.G., Reproductive Resting Forms of Arthrobacter globiformis, Mikrobiologiya, 2000, vol. 69, no. 3, pp. 377–382 [Microbiology (Engl. Transl.), vol. 69, no. 3, pp. 309–313].

    CAS  Google Scholar 

  15. Mulyukin, A.L., Suzina, N.E., Duda, V.I., and El’-Registan, G.I., Structural and Physiological Diversity among Cystlike Resting Cells of Bacteria of the Genus Pseudomonas, Mikrobiologiya, 2008, vol. 76, no. 4, pp. 512–523 [Microbiology (Engl. Transl.), vol. 76, no. 4, pp. 455–465].

    Google Scholar 

  16. Vorob’eva, L.I., Khodzhaev, E.Yu., Ponomareva, G.M., and Bryukhanov, A.L., Extracellular Protein Metabolite of Luteococcus japonicus subsp. casei Reactivates Cells Subjected to Oxidative Stress, Prikl. Biokhimiya. Mikrobiologiya, 2003, vol. 39, no. 2, pp. 202–207 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 39, no. 2, pp. 178–182].

    Google Scholar 

  17. Bogosian, G., Aardema, N.D., Bourneuf, E.V., Morris, P.J.L., and O’Neil, J.P., Recovery of Hydrogen Peroxide-Sensitive Culturable Cells of Vibrio vulnificus Gives the Apperance of Resuscitation from a Viable but Nonculturable State, J. Bacteriol., 2000, vol. 182, no. 18, pp. 5070–5075.

    Article  PubMed  CAS  Google Scholar 

  18. El’-Registan, G.I., Mulyukin, A.L., Nikolaev, Yu.A., Suzina, N.E., Gal’chenko, V.F., and Duda, V.I., Adaptogenic Functions of Extracellular Autoregulators of Microorganisms, Mikrobiologiya, 2006, vol. 75, no. 4, pp. 446–456 [Microbiology (Engl. Transl.), vol. 65, no. 6, pp. 380–389].

    Google Scholar 

  19. Mizunoe, Y., Wai, S.N., Takade, A., and Yoshida, S., Restoration of Culturability of Starvation-Stressed and Low-Temperature-Stressed Escherichia coli O157 Cells by Using H2O2-Degrading Compounds, Arch. Microbiol., 1999, vol. 172, pp. 63–67.

    Article  PubMed  CAS  Google Scholar 

  20. Mulyukin, A.L., Kozlova, A.N., Kaprel’yants, A.S., and El’-Registan, G.I., The d1 Autoregulatory Factor in Micrococcus luteus Cells and Culture Liquid: Detection and Accumulation Dynamics, Mikrobiologiya, 1996, vol. 65, no. 1, pp. 20–25 [Microbiology (Engl. Transl.), vol. 65, no. 1, pp. 15–20].

    CAS  Google Scholar 

  21. Kaprel’yants, A.S., Suleimenova, M.I., Sorokina, A.D., Deborin, G.A., El’-Registan, G.I., Stoyanovich, F.M., Lille, Yu.E., and Ostrovskii, D.N., Structural and Functional Changes in Bacterial and Model Membranes Caused by Phenolic Lipids, Biol. Membr., 1987, vol. 4, pp. 254–261.

    Google Scholar 

  22. Sun, Z. and Zhang, Y., Spent Culture Supernatant of Mycobacterium tuberculosis H37Ra Improves Viability of Aged Cultures of This Strain and Allows Small Inocula to Initiate Growth, J. Bacteriol., 1999, vol. 181, no. 24, pp. 7626–7628.

    PubMed  CAS  Google Scholar 

  23. Zhang, Y., Yang, Y., Woods, A., Cotter, R.J., and Sun, Z., Resuscitation of Dormant Mycobacterium tuberculosis by Phospholipids or Specific Peptides, Biochem. Biophys. Res. Commun., 2001, vol. 284, pp. 542–547.

    Article  PubMed  CAS  Google Scholar 

  24. Vorob’eva, L.I., Khodzhaev, E.Yu., and Ponomareva, G.M., Cross-Effects of Extracellular Factors of Adaptation to Stress in Luteococcus casei and Saccharomyces cerevisiae, Prikl. Biokhimiya. Mikrobiologiya, 2005, vol. 40, no. 2, pp. 171–175 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 40, no. 2, pp. 150–153].

    Google Scholar 

  25. Postgate, J.R. and Hunter, J.R., Accelerated Death of Aerobacter aerogenes Starved in the Presence of Growth-Limiting Substrates, Gen. Microbiol., 1964, vol. 34, pp. 459–473.

    CAS  Google Scholar 

  26. Normander, B., Hendriksen, N.B., and Nybroe, O., Green Fluorescent Protein-Marked Pseudomonas fluorescens: Localization, Viability, and Activity in the Natural Barley Rhizosphere, Appl. Environ. Microbiol., 1999, vol. 65, pp. 4646–4651.

    PubMed  CAS  Google Scholar 

  27. Bjergbae, L.A. and Roslev, P., Formation of Nonculturable Escherichia coli in Drinking Water, J. Appl. Microbiol., 2005, vol. 99, pp. 1090–1098.

    Article  CAS  Google Scholar 

  28. Winding, A., Binnerup, S.J., and Sørensen, J., Viability of Indigenous Soil Bacteria Assayed by Respiratory Activity and Growth, Appl. Environ. Microbiol., 1994, vol. 60, no. 8, pp. 2869–2875.

    PubMed  CAS  Google Scholar 

  29. Bloomfield, S.F., Stewart, G.S.A.B., Dodd, C.E.R., Booth, I.R., and Power, E.G.M., The Viable but Non-Culturable Phenomenon Explained?, Microbiology (UK), 1998, vol. 144, pp. 1–2.

    Article  CAS  Google Scholar 

  30. Stevenson, B.S., Eichorst, S.A., Wertz, J.T., Schmidt, T.M., and Breznak, J.A., New Strategies for Cultivation and Detection of Previously Uncultured Microbes, Appl. Environ. Microbiol., 2004, vol. 70, no. 8, pp. 4748–4755.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Mulyukin.

Additional information

Original Russian Text © A.L. Mulyukin, E.V. Demkina, N.A. Kryazhevskikh, N.E. Suzina, L.I. Vorob’eva, V.I. Duda, V.F. Galchenko, G.I. El-Registan, 2009, published in Mikrobiologiya, 2009, Vol. 78, No. 4, pp. 456–468.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulyukin, A.L., Demkina, E.V., Kryazhevskikh, N.A. et al. Dormant forms of Micrococcus luteus and Arthrobacter globiformis not platable on standard media. Microbiology 78, 407–418 (2009). https://doi.org/10.1134/S0026261709040031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261709040031

Key words

Navigation