Skip to main content
Log in

Adaptation of lactic acid bacteria to unfavorable growth conditions

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The adaptation of lactic acid bacteria (LAB) to unfavorable growth conditions, e.g., depletion of nutrient sources, overthreshold cell density of a population, or antibiotic impact, was shown to include: (1) formation of cyst-like dormant cells (CDC) providing for survival and species preservation and (2) realization of intra-population phenotypic variability, which is demonstrated by development of non-dominant colonies on plates inoculated with CDC suspensions. In Lactobacillus plantarum, the dormant cells, which retained viability and heat resistance for a long time, were formed in 10- and 20-fold concentrated suspensions of the stationary phase cells. In 4-month cell suspensions, two types of cells were present, CDC and L-forms. The CDC of Lactococcus lactis were formed in (1) post-stationary cultures grown under glucose limitation and (2) in stationary phase cultures resuspended in starvation medium (without glucose). Populations of CDC stored for different periods of time varied in the ability for phase variation; as a result, both variants exhibited a shift of the population’s CDC spectrum to the transition of the dominant S-colony type to the R-type up to complete substitution (by day 25). In Lactobacillus acidophilus AT-41, CDC appeared in (1) post-stationary cultures grown on a nitrogen-limited medium; (2) autolyzing cultures treated with ampicillin or erythromycin; and (3) concentrated (10- and 20-fold) suspensions of stationary-phase cells. At plating of L. acidophilus CDC, the substitution of the S-type for the dominant R-type in variants (1) (day 30), (2) (100 μg/ml ampicillin, day 10), and (3) (day 25) was 68.6%, 30.1%, and 61.2%, respectively. The S-variant of L. acidophilus was used for development of a novel lactofermented product based on vegetable (beet) juice fermentation, which sustained high titer of viable cells (2 × 106 cells/ml).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ishibashi, N. and Yamazaki, S., Probiotics and Safety, Am. J. Clin. Nutr., 2001, vol. 73, pp. 465–470.

    Google Scholar 

  2. Hartke, A., Bouche, S., Gansel, X., Boutibonnes, P., and Auffray, Y., Starvation-Induced Stress Resistance in Lactococcus lactis subsp. lactis IL1403, Appl. Environ. Microbiol., 1994, vol. 60, no. 9, pp. 3474–3478.

    PubMed  CAS  Google Scholar 

  3. Chou, L.S. and Weimer, B., Isolation and Characterization of Acid- and Bile-Tolerant Isolates from Strains of Lactobacillus acidophilus, J. Dairy Sci., 1999, vol. 82, no. 1, pp. 23–31.

    Article  PubMed  CAS  Google Scholar 

  4. Kunji, E.R.S., Ubbink, T., Matin, A., Poolman, B., and Konings,.N., Phisiological Response of Lactococcus lactis ML3 to Alternating Conditions of Growth and Starvation, Arch. Microbiol., 1993, vol. 159, pp. 372–379.

    Article  CAS  Google Scholar 

  5. Ganina, V.I., Probiotiki. Naznachenie, svoistva i osnovy biotekhnologii: Monografiya (Probiotics: Application, Properties, and Fundamentals of Biotechnology), Moscow: MGUPB, 2001.

    Google Scholar 

  6. Douglas, L.C. and Sanders, M.E., Probiotics Prebiotics in Dietetics Practice, J. Am. Diet. Assoc., 2008, vol. 108, no. 3, pp. 510–521.

    Article  PubMed  Google Scholar 

  7. Macfarlane, G.T., Steed, H., and Macfarlane, S., Bacterial Metabolism and Health-Related Effects of Galacto-Oligosaccharides and Other Prebiotics, Appl. Environ. Microbiol., 2008, vol. 104, no. 2, pp. 305–344.

    CAS  Google Scholar 

  8. Adams, M.R. and Marteau, P., On the Safety of Lactic Acid Bacteria from Food, Int. J. Food. Microbiol., 1995, vol. 27, pp. 263–267.

    Article  PubMed  CAS  Google Scholar 

  9. Kim, W.S., Park, J.H., Ren, J., Su, P., and Dunn, N.W., Survival Response and Rearrangement of Plasmid DNA of Lactococcus lactis during Long-Term Starvation, Appl. Environ. Microbiol., 2001, vol. 67, no. 10, pp. 4594–4602.

    Article  PubMed  CAS  Google Scholar 

  10. Bukharin, O.V., Gintsburg, A.L., Romanova, Yu.M., and El’-Registan, G.I., Mekhanizmy vyzhivaniya bakterii (Mechanisms of Bacterial Survival), Moscow: Meditsina, 2005.

    Google Scholar 

  11. Thorne, S.H. and Williams, H.D., Adaptation to Nutrient Starvation in Rhizobium leguminosarum bv. phaseoli: Analysis of Survival, Stress Resistance, and Changes in Macromolecular Synthesis During Entry to and Exit from Stationary Phase, J. Bacteriol., 1997, vol. 179, no. 22, pp. 6894–6901.

    PubMed  CAS  Google Scholar 

  12. Kelly, A.F., Park, S.F., Bovill, R., and Mackey, B.M., Survival of Campylobacter jejini during Stationary Phase: Evidence for the Absence of a Phenotypic Stationary Phase Responce, Appl. Environ. Microbiol., 2001, vol. 67, no. 5, pp. 2248–2254.

    Article  PubMed  CAS  Google Scholar 

  13. Woude, M.V. and Baumler, A.J., Phase and Antigenic Variation in Bacteria, Clin. Microbiol. Rev., 2004, vol. 17, no. 3, pp. 581–611.

    Article  PubMed  CAS  Google Scholar 

  14. Golovlev, E.L., Phenotype Metastability in Bacteria, Mikrobiologiya, 1998, vol. 59, no. 2. pp. 149–155 [Microbiology (Engl. Transl.), vol. 59, no. 2. pp. 119–124].

    Google Scholar 

  15. Hallet, B. and Sherratt, D.J., Transposition and Site-Specific Recombination: Adapating DNA Cut and Paste Mechanism to a Variety of Genetic Rearrangements, FEMS Microbiol. Rev., 1997, vol. 21, pp. 157–178.

    Article  PubMed  CAS  Google Scholar 

  16. Perkins-Balding, D., Duval-Valentin, G., and Glasgow, A.C., Excision of IS492 Requires Flanking Target Sequences and Results in Circle Formation in Pseudoalteromonas atlantica, J. Bacteriol., 1999, vol. 181, pp. 1691–1697.

    Google Scholar 

  17. Il’inskaya, O.N., Kolpakov, A.I., Zelenikhin, P.V., Kruglova, Z.F., Choidash, B., Doroshenko, E.V., Mulyukin, A.L., and El’-Registan, G.I., The Effect of Anabiosis Autoinducers on the Bacterial Genome, Mikrobiologiya, 2002, vol. 71, no. 2, pp. 194–199 [Microbiology (Engl. Transl.), vol. 71, no. 2. pp. 164–168].

    Google Scholar 

  18. Doroshenko, E.V., Loiko, N.G., Il’inskaya, O.N., Kolpakov, A.N., Gornova, I.B., Klimanova, E.V., and El’-Registan, G.I., Characterization of Bacillus cereus Dissociants, Mikrobiologiya, 2001, vol. 70, no. 6, pp. 811–819 [Microbiology (Engl. Transl.), vol. 70, no. 6. pp. 698–705].

    CAS  Google Scholar 

  19. Khabibullin, S.S., Nikolaev, Yu.A., Loiko, N.G., Golod, N.A., Mil’ko, E.S., Voeikova, T.A., and El’-Registan, G.I., Autoregulation of Phenotypic Variability in Bacillus licheniformis, Zhurnal Mikrobiologii, Epidemiologii I Immunologii, 2006, vol. 75, no. 6, pp. 9–13.

    Google Scholar 

  20. Shol’ts, K.F. and Ostrovskii, D.N., Cell for Amperometric Oxygen Determination, in Metody sovremennoi biokhimii (Methods in Modern Biochemistry), Moscow: Nauka, 1975, pp. 52–58.

    Google Scholar 

  21. Sbornik instruktsii po selektsii molochnokislykh bakterii i podboru zakvasok dlya kislomolochnykh produktov (Instructions for Selection of Lactic Acid Bacteria and Starter Choice for Cultured Milk Foods), Moscow: VNIMI, 1986, p. 44.

  22. Ermolaeva, G.A. and Kolcheva, R.A., Tekhnologiya proizvodstva piva i bezalkogol’nykh napitkov (Technology of Beer and Nonalcoholic Beverages), Moscow: Akademiya, 2000.

    Google Scholar 

  23. Mulyukin, A.L., Lusta, K.A., Gryaznova, M.N., Kozlova, A.N., Duzha, M.V., Duda, V.I., and El’-Registan, G.I., Formation of Resting Cells by Bacillus cereus and Micrococcus luteus, Mikrobiologiya, 1996, vol. 65, no. 6, pp. 782–789 [Microbiology (Engl. Transl.), vol. 65, no. 6. pp. 683–689].

    CAS  Google Scholar 

  24. Pilicioli, R.G., Preusser de, M.E., Guedes F.A., Alves d’, A.A., and Frazzon, J., Phenotypic and Genotypic Heterogeneity of Enterococcus spp. Isolated from Food in Southern Brazil, J. Basic Microbiol., 2008, vol. 48, no. 1, pp. 31–38.

    Article  CAS  Google Scholar 

  25. Pzoni, L., Kotzamanides, C., Andrighetto, C., Lombardi, A., Tzanetakis, N., and Litopoulou-Tzanetaki, E., Genotypic and Phenotypic Heterogeneity in Enterococcus spp. Isolated from Batzos, a Raw Goat Milk Cheese, Int. J. Food Microbiol., 2006, vol. 109, no. 1, pp. 10–20.

    Google Scholar 

  26. Pzoni, L., Kotzamanides, C., Yiangou, M., and Litopoulou-Tzanetaki, E., Genotypic and Phenotypic Diversity of Lactococcus lactis Isolates Form Batzos, a Greek PDO Raw Goat Milk Cheese, Int. J. Food Microbiol., 2007, vol. 114, no. 2, pp. 211–220.

    Article  CAS  Google Scholar 

  27. Giraffa, G., Andrighetto, C., Antonello, C., Gatti, M., Lazzi, C., Marcazzan, G., Lombardi, A., and Neviani, E., Genotypic and Phenotypic Diversity of Lactobacillus delbrueckii subsp. lactis Strains of Diary Origin, Int. J. Food Microbiol., 2004, vol. 91, no. 2, pp. 129–139.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Loiko.

Additional information

Original Russian Text © N.A. Golod, N.G. Loiko, A.L. Mulyukin, A.L. Neiymatov, L.I. Vorobjeva, N.E. Suzina, E.F. Shanenko, V.F. Gal’chenko, G.I. El-Registan, 2009, published in Mikrobiologiya, 2009, Vol. 78, No. 3, pp. 317–327.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golod, N.A., Loiko, N.G., Mulyukin, A.L. et al. Adaptation of lactic acid bacteria to unfavorable growth conditions. Microbiology 78, 280–289 (2009). https://doi.org/10.1134/S0026261709030047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261709030047

Key words

Navigation