Skip to main content
Log in

Cellobiose catabolism in the haloalkaliphilic hydrolytic bacterium Alkaliflexus imshenetskii

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Cellobiose metabolism was studied in Alkaliflexus imshenetskii, a haloalkaliphilic hydrolytic bacterium capable of utilizing certain polymers of plant origin, as well as mono- and disaccharides. The major products of cellobiose fermentation by the bacterium were succinate and acetate, and formate was a minor product. Cellobiose could be split into glucose molecules by both β-glucosidase (hydrolytic pathway) and phosphorylase (phosphorolytic pathway); the activity of the former enzyme was two orders of magnitude higher (3600 nmol/(min mg) versus 36 nmol/(min mg)). In cell extracts of the bacterium, high activities of the Embden-Meyerhof-Parnas pathway enzymes—hexokinase, glucose-phosphate isomerase, and phosphofructokinase—were revealed, as well as the activities of glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and key enzymes of the Entner-Doudoroff pathway—6-phospho-gluconate dehydratase and 2-keto-3-deoxy-6-phospho-gluconate aldolase. Neither the activity of the key enzyme of the hexose-mono-phosphate pathway, 6-phospho-gluconate dehydrogenase, nor the activities of the key enzymes of the modified Entner-Doudoroff pathway, glucose dehydrogenase and 2-keto-3-deoxy-gluconate kinase, were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wood, T.M., Fungal Cellulases, Biochem. Soc. Trans., 1992, vol. 20, pp. 46–53.

    PubMed  CAS  Google Scholar 

  2. Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S., Microbial Cellulose Utilization: Fundamentals and Biotechnology, Microbiol. Mol. Biol. Rev., 2002, vol. 66, pp. 506–577.

    Article  PubMed  CAS  Google Scholar 

  3. Zvereva, E.A., Fedorova, T.V., Kevbrin, V.V., Zhilina, T.N., and Rabinovich, M.L., Cellulase Activity of a Haloalkaliphilic Anaerobic Bacterium, Strain Z-7026, Extremophiles, 2006, vol. 10, pp. 53–60.

    Article  PubMed  CAS  Google Scholar 

  4. Zhilina, T.N., Kevbrin, V.V., Tourova, T.P., Lysenko, A.M., Kostrikina, N.A., and Zavarzin, G.A., Clostridium alkalicellum sp. nov., an Obligately Alkaliphilic Cellulolytic Bacterium from a Soda Lake in the Baikal Region, Mikrobiologiya, 2005, vol. 74, pp. 642–653 [Microbiology (Engl. Transl.), vol. 74, no. 5, pp. 557–566].

    CAS  Google Scholar 

  5. Hallwell, G., Microbial β-Glucanases, Prog. Ind. Microbiol., 1979, vol. 15, pp. 1–60.

    Google Scholar 

  6. Alexander, J.K., Cellobiose Phosphorylase from Clostridium thermocellum, Methods Enzymol., Ginsburg, V., Ed., N.Y.: Academic Press, 1972, vol. 28, pp. 944–948.

    Google Scholar 

  7. Ng, T.K. and Zeikus, J.G., Differential Metabolism of Cellobiose and Glucose by Clostridium thermocellum and Clostridium thermohydrosulfuricum, J. Bacteriol., 1982, vol. 150, pp. 1391–1399.

    PubMed  CAS  Google Scholar 

  8. Lou, J., Dawson, K.A., and Strobel, H.J., Cellobiose and Cellodextrin Metabolism by the Ruminal Bacterium Ruminococcus albus, Curr. Microbiol., 1997, vol. 35, pp. 221–227.

    Article  PubMed  CAS  Google Scholar 

  9. Garnova, E.S. and Krasil’nikova, E.N., Carbohydrate Metabolism of the Saccharolytic Alkaliphilic Anaerobes Halonatronum saccharophilum, Amphibacillus fermentum, and Amphibacillus tropicus, Mikrobiologiya, 2003, vol. 72, pp. 627–632 [Microbiology (Engl. Transl.), vol. 72, no. 5, pp. 558–563].

    CAS  Google Scholar 

  10. Zhilina, T.N., Appel, R., Probian, C., Brossa, E.L., Harder, J., Widdel, F., and Zavarzin, G.A., Alkaliflexus imshenetskii gen. nov. sp. nov., a New Alkaliphilic Gliding Carbohydrate-fermenting Bacterium with Propionate Formation from a Soda Lake, Arch. Microbiol., 2004, vol. 182, pp. 244–253.

    Article  PubMed  CAS  Google Scholar 

  11. Pfennig, N. and Lippert, K.D., Über das Vitamin B12-Bedtirfhis phototropher Schwefelbakterien, Arch. Mikrobiol., 1966, vol. 55, pp. 245–246.

    Article  CAS  Google Scholar 

  12. Wolin, E.A., Wolin, M.J., and Wolfe, R.S., Formation of Methane by Bacterial Extracts, J. Biol. Chem., 1963, vol. 238, pp. 2882–2886.

    PubMed  CAS  Google Scholar 

  13. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Rendall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    PubMed  CAS  Google Scholar 

  14. Barnard, E.A., Hexokinases from Yeast, Methods Enzymol., Wood, W.A., Ed., N.Y.: Academic Press, 1975, vol. 42C, pp. 6–20.

    Google Scholar 

  15. Gracy, R.W., Glucosephosphate Isomerase from Catfish Muscle and Liver and from Mammalian Tissues, Methods Enzymol., 1982, vol. 89, pp. 550–558.

    Article  PubMed  CAS  Google Scholar 

  16. Kemp, R.G., Phosphofructokinase from Rabbit Skeletal Muscle, Methods Enzymol., Wood, W.A., Ed., N.Y.: Academic Press, 1975, vol. 42C, pp. 71–77.

    Google Scholar 

  17. Johnsen, U., Selig, M., Xavier K.B., Santos, H., and Schönheit, P., Different Glycolytic Pathways for Glucose and Fructose in the Halophilic Archaeon Halococcus saccharolyticus, Arch. Microbiol., 2001, vol. 175, pp. 52–61.

    Article  PubMed  CAS  Google Scholar 

  18. Lou, J., Dawson, K.A., and Strobel, H.J., Role of Phosphorolytic Cleavage in Cellobiose and Cellodextrin Metabolism by the Ruminal Bacterium Prevotella ruminicola, Appl. Environ. Microbiol., 1996, vol. 62, pp. 1770–1773.

    PubMed  CAS  Google Scholar 

  19. Zhilina, T.N., Garnova, E.S., Tourova, T.P., Kostrikina, N.A., and Zavarzin, G.A., Halonatronum saccharophilum gen. nov. sp. nov.: A New Haloalkaliphilic Bacterium of the Order Haloanaerobiales from Lake Magadi, Mikrobiologiya, 2001, vol. 70, pp. 77–85 [Microbiology (Engl. Transl.), vol. 70, no. 1, pp. 64–72].

    CAS  Google Scholar 

  20. Zhilina, T.N., Garnova, E.S., Tourova, T.P., Kostrikina, N.A., and Zavarzin, G.A., Amphibacillus fermentum sp. nov. and Amphibacillus tropicus sp. nov., New Alkaliphilic, Facultatively Anaerobic, Saccharolytic Bacilli from Lake Magadi Mikrobiologiya, 2001, vol. 70, pp. 825–837 [Microbiology (Engl. Transl.), vol. 70, no. 6, pp. 711–722].

    CAS  Google Scholar 

  21. Doelle, H.W., Bacterial Metabolism, New York: Academic Press, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Detkova.

Additional information

Original Russian Text © E.N. Detkova, V.V. Kevbrin, 2009, published in Mikrobiologiya, 2009, Vol. 78, No. 3, pp. 304–309.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detkova, E.N., Kevbrin, V.V. Cellobiose catabolism in the haloalkaliphilic hydrolytic bacterium Alkaliflexus imshenetskii . Microbiology 78, 267–272 (2009). https://doi.org/10.1134/S0026261709030023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261709030023

Key words

Navigation