Skip to main content
Log in

Salicylate degradation by Pseudomonas putida strains not involving the “Classical” nah2 operon

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Genetic systems for salicylate catabolism were analyzed in 12 strains of Pseudomonas putida, isolated from polluted soil samples collected in the Murmansk and Tula oblasts. All of the studied P. putida strains utilize salicylate in the ortho-pathway of catechol cleavage without employing the enzymes of the “classical” nah2 operon. The data demonstrates that salicylate degradation in the studied strains is performed with the involvement of the salicylate hydroxylase gene analogous to the nahU gene of strain P. putida ND6. New variants of salicylate hydroxylase genes nahG1 and nahU were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies, J.I. and Evans, W.C., Oxidative Metabolism of Naphthalene by Soil Pseudomonas: The Ring-Fission Mechanism, J. Biochem., 1964, vol. 91, pp. 251–261.

    CAS  Google Scholar 

  2. Evans, W.C., Fernley, H.N., and Griffiths, E., Oxidative Metabolism of Phenanthrene and Anthracene by Soil Pseudomonads: the Ring-Fission Mechanism, J. Biochem., 1965, vol. 95, pp. 819–831.

    CAS  Google Scholar 

  3. Müller, U. and Lingens, F., Degradation of 1,4-Naphthoquinones by Pseudomonas putida, Biol. Chem. Hoppe Seyler, 1988, vol. 369, pp. 1031–1043.

    PubMed  Google Scholar 

  4. Shamsuzzaman, K.M. and Barnsley, E.A., The Regulation of Naphthalene Metabolism in Pseudomonads, Biochem. Biophys. Res. Commun., 1974, vol. 60, pp. 582–587.

    Article  PubMed  CAS  Google Scholar 

  5. Katagiri, M., Maeno, H., Yamamoto, S., Hayaishi, O., Kitao, T., and Oae, S., Salicylate Hydroxylase, a Monooxygenase Requiring Flavin Adenine Dinucleotide. II. The Mechanism of Salicylate Hydroxylation to Catechol, J. Biol. Chem., 1965, vol. 240, pp. 3414–3417.

    PubMed  CAS  Google Scholar 

  6. Starovoitov, I.I., Nefedova, M.Y., Yakovlev, G.I., Zyakun, A.M., and Adanin, V.M., Gentisic Acid as a Microbial Oxidation Product of Naphthalene, Izv. Akad. Nauk. SSSR Ser. Khim, 1975, vol. 9, pp. 2091–2092.

    Google Scholar 

  7. Buswell, J.A., Paterson, A., and Salkinoja-Salonen, M.S., Hydroxylation of Salicylic Acid to Gentisate by a Bacterial Enzyme, FEMS Microbiol. Letts., 1980, vol. 8, pp. 135–137.

    Article  CAS  Google Scholar 

  8. Dunn, N.W. and Gunsalus, I.C., Transmissible Plasmid Coding Early Enzymes of Naphthalene Oxidation in Pseudomonas putida, J. Bacteriol., 1973, vol. 114, pp. 974–979.

    PubMed  CAS  Google Scholar 

  9. Habe, H. and Omori, T., Genetics of Polycyclic Aromatic Hydrocarbons Metabolism in Diverse Aerobic Strains, Boisci. Biotechnol. Biochem., 2003, vol. 67, pp. 225–243.

    Article  CAS  Google Scholar 

  10. Izmalkova, T.Yu., Sazonova, O.I., Sokolov, S.L., Kosheleva, I.A., and Boronin, A.M., Diversity of Genetic Systems Responsible for Naphthalene Biodegradation in Pseudomonas fluorescens Strains, Mikrobiologiya, 2005, vol. 74, no. 1, pp. 70–78 [Microbiology (Engl. Transl.), vol. 74, no. 1, pp. 60–68].

    Google Scholar 

  11. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: a Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York, 1989.

  12. Evans, C.G.T., Herbert, D., and Tempest, D.W., The Continuous Cultivation of Microorganisms: II. Construction of a Chemostat, Meth. Microbiol., 1970, vol. 2, pp. 277–327.

    Article  CAS  Google Scholar 

  13. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. Eds., Shot Protocols in Molecular Biology, Wiley, 1999, p. 4.

  14. Alonso, R., Martín, A., Peláez, T., Marin, M., Rodríguez-Creixéms, M., and Bouza, E., An Improved Protocol for Pulsed-Field Gel Electrophoresis Typing of Clostridium difficile, J. Med. Microbiol., 2005, vol. 54, pp. 155–157.

    Article  PubMed  CAS  Google Scholar 

  15. Izmalkova, T.Yu., Sazonova, O.I., Sokolov, S.L., Kosheleva, I.A., and Boronin, A.M., The P-7 Incompatibility Group Plasmids Responsible for Biodegradation of Naphthalene and Salicylate in Fluorescent Pseudomonads, Mikrobiologiya, 2005, vol. 74, no. 3, pp. 342–348 [Microbiology (Engl. Transl.), vol. 74, no. 3, pp. 290–295].

    Google Scholar 

  16. Dombek, P.E., Johnson, L.K., Zimmerley, S.T., and Sadowsky, M.J., Use of Repetitive DNA Sequences and the PCR to Differentiate Escherichia coli Isoletes from Human and Animal Sources, Appl. Environ. Microbiol., 2000, vol. 66, pp. 2572–2577.

    Article  PubMed  CAS  Google Scholar 

  17. Weisburg, W.G., Barnes, S.M., Pelletier, D.A., and Lane, D.J., 16S Ribosomal DNA Amplification for Phylogenetic Study, J. Bacteriol., 1991, vol. 73, pp. 697–703.

    Google Scholar 

  18. Izmalkova, T.Yu., Mavrodi, D.V., Sokolov, S.L., Kosheleva, I.A., Smalla, K., Thomas, C.M., and Boronin, A.M., Molecular Classification of IncP-9 Naphthalene Degradation Plasmids, Plasmid, 2006, vol. 56, pp. 1–10.

    Article  PubMed  CAS  Google Scholar 

  19. Wilkstrom, P., Wilklund, A., Anderson, A.C., and Forman, M., DNA Recovery and PCR Quantification of Catechol-2,3-Dioxygenase Genes from Different Soil Types, J. Biotechnol., 1996, vol. 52, pp. 107–120.

    Article  Google Scholar 

  20. Hegeman, G.D., Synthesis of the Enzymes of the Mandelate Pathway by Pseudomonas putida I. Synthesis of Enzymes by the Wild Type, J. Bacteriol., 1966, vol. 91, pp. 1140–1154.

    PubMed  CAS  Google Scholar 

  21. Feist, C.F. and Hegeman, G.D., Phenol and Benzoate Metabolism by Pseudomonas putida of Tangential Pathways, J. Bacteriol., 1969, vol. 100, pp. 869–877.

    PubMed  CAS  Google Scholar 

  22. Kalb, V.F. and Bernlohr, R.W., A New Spectrophotometric Assay for Protein in Cell Extract, Anal. Biochem., 1977, vol. 82, pp. 362–366.

    Article  PubMed  CAS  Google Scholar 

  23. Bergey’s Manual of Systematic Bacteriology, Krieg, N.J. and Holt, J.G., Eds., Baltimore: Williams & Wilkins, 1984.

    Google Scholar 

  24. Raskin, I., Salicylate, a New Plant Hormone, Plant Physiol., 1992, pp. 799–803.

  25. Reiner, A.M., Metabolism of Benzoic Acid by Bacteria: 3,5-Cyclohexadiene-1,2-Diol-1-Carboxilic Acid Is an Intermediate in the Formation of Catechol, J. Bacteriol., 1971, vol. 108, pp. 89–94.

    PubMed  CAS  Google Scholar 

  26. Timmis, K.N., Lehrbach, P.R., Harayama, S., Don, R.H., Mermod, N., Bas, S., Leppick, R., Weightman, A.J., Reineke, W., and Knackmuss, H.-J., Analysis and Manipulation of Plasmid-Encoded Pathways for the Catabolism of Aromatic Compounds by Soil Bacteria, in Plasmids in Bacteria, Helinski D.R., Cohen C.N., Clewell D.B., Jackson D.A., and Hollaender A, Eds., New York: Plenum Press, 1985, pp. 719–739.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Izmalkova.

Additional information

Original Russian Text © O.I. Sazonova, T.Yu. Izmalkova, I.A. Kosheleva, A.M. Boronin, 2008, published in Mikrobiologiya, 2008, Vol. 77, No. 6, pp. 798–804.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sazonova, O.I., Izmalkova, T.Y., Kosheleva, I.A. et al. Salicylate degradation by Pseudomonas putida strains not involving the “Classical” nah2 operon. Microbiology 77, 710–716 (2008). https://doi.org/10.1134/S002626170806009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626170806009X

Key words

Navigation