Skip to main content
Log in

Peculiarities of C2 metabolism and intensification of the synthesis of surface-active substances in Rhodococcus erythropolis EK-1 grown in ethanol

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Oxidation of ethanol, acetaldehyde, and acetate in Rhodococcus erythropolis EK-1, producer of surface-active substances (SAS), is catalyzed by N,N-dimethyl-4-nitrosoaniline (DMNA)-dependent alcohol dehydrogenase, NAD+/NADP+-dependent dehydrogenases (optimum pH 9.5), and acetate kinase/acetyl-CoA-synthetase, respectively. The glyoxylate cycle and complete tricarboxylic acid cycle function in the cells of R. erythropolis EK-1 growing on ethanol; the synthesis of phosphoenolpyruvate (PEP) is provided by the two key enzymes of gluconeogenesis, PEP carboxykinase and PEP synthetase. Introduction of citrate (0.1%) and fumarate (0.2%) into the cultivation medium of R. erythropolis EK-1 containing 2% ethanol resulted in the 1.5-and 3.5-fold increase in the activities of isocitrate lyase and PEP synthetase (the key enzymes of the glyoxylate cycle and gluconeogenesis branch of metabolism, respectively) and of lipid synthesis, as evidenced by the 1.5-fold decrease of isocitrate dehydrogenase activity. In the presence of fumarate and citrate, the indices of SAS synthesis by strain R. erythropolis EK-1 grown on ethanol increased by 40–100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pirog, T.P., Shevchuk, T.A., Voloshina, I.N., and Karpenko, E.I., Production of Surfactants by Rhodococcus erythropolis Strain EK-1, Grown on Hydrophilic and Hydrophobic Substrates, Prikl. Biokhimiya I Mikrobiologiya, 2004, vol. 40, no. 5, pp. 544–550 [Appl. Biochem. Microbiol., vol. 40, no. 5, pp. 470–475].

    CAS  Google Scholar 

  2. Pirog, T.P., Voloshina, I.N., Ignatenko, S.V., and Vil’danova-Martsishin, R.I., Some Patterns of Surfactant Synthesis by Rhodococcus erythropolis EK-1 Grown on Hexadecane, Biotekhnol., 2005, no. 6, pp. 27–36.

  3. de Carvalho, C., Parreno-Marchante, B., Neumann, G., da Fonseca, M., and Heipieper, H., Adaptation of Rhodococcus erythropolis DCL14 To Growth on n-Alkanes, Alcohols and Terpenes, Appl. Microbiol. Biotechnol., 2005, vol. 67, pp. 383–388.

    Article  PubMed  CAS  Google Scholar 

  4. de Carvalho, C. and da Fonseca, M., Degradation of Hydrocarbons and Alcohols at Different Temperatures and Salinities by Rhodococcus erythropolis DCL14, FEMS Microbiol. Ecol., 2005, vol. 51, pp. 388–399.

    Google Scholar 

  5. Korzh, Yu.V., Regulation of C2 metabolism in Acinetobacter sp. B-7005, a Producer of Ethapolan Exopolysaccharide, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Inst. Microbiol. Virusol. NAS Ukraine, Kiev, 2005.

    Google Scholar 

  6. Pirog, T.P. and Kuz’minskaya, Yu.V., Some Characteristics of Central Metabolism in Acinetobacter sp. Grown on Ethanol, Mikrobiologiya, 2003, vol. 72, no. 4, pp. 459–465 [Microbiology (Engl. Transl.), vol. 71, no. 2, pp. 408–413].

    CAS  Google Scholar 

  7. Mironov, V.A., Sergeeva, A.V., Voronkova, V.V., and Danilenko, V.N., Biosynthesis of Avermectins: Physiological and Technological Aspects, Antibiot. i Khimioter, 1997, vol. 42, no. 3, pp. 31–36.

    CAS  Google Scholar 

  8. Stuwer, O., Hommel, R., Haferburg, D., and Kleber, H.P., Production of crystalline surface-active glycolipids by a Strain Torulopsis apicola, J. Biotechnology, 1987, vol. 6, pp. 259–269.

    Article  Google Scholar 

  9. de Roubin, M.R., Mulligan, C.N., and Gibbs, B.F., Correlation of Enhanced Surfactin Production with Decreased Isocitrate Dehydrogenase Activity, Can. J. Microbiol., 1989, vol. 35, no. 9, pp. 854–859.

    Article  Google Scholar 

  10. Lesyk, O.Yu., Eliseev, S.A., Polulyakh, O.V., and Karpenko, Yu.V., Formation of a Surface-Active Complex by the Culture of Carotene-Producing Yeasts Phaffia rhodozyma and Its Emulsifying Properties, Mikrobiol. Zh., 1991, vol. 53, no. 2, pp. 36–40.

    CAS  Google Scholar 

  11. Tarasenko, D. and Pirog, T., Intensification of Surface-Active Substances’ Synthesis by Strain Rhodococcus erythropolis EK-1, Int. Conf. “Modern problems of Microbiology and Biotechnology” Odessa, 28–31 May, 2007, p. 86.

  12. Metody pochvennoi mikrobiologii i biokhimii (Methods in Soil Microbiology and Biochemistry), Zvyagintsev, D.G., Ed., Moscow: Mosk. Gos. Univ., 1991.

    Google Scholar 

  13. Biokhimicheskie issledovaniya membran (Research in Membrane Biochemistry) Meddy, E., Ed., Moscow: Mir, 1979.

    Google Scholar 

  14. Pirog, T.P., Sokolov, I.G., Kuz’minskaya, Yu.V., and Malashenko, Yu.R., Peculiarities of Ethanol Metabolism in an Acinetobacter sp. Mutant Strain Defective in Exopolysaccharide Synthesis, Mikrobiologiya, 2002, vol. 71, no. 2, pp. 222–229 [Microbiology (Engl. Transl.), vol. 71, no. 2, pp. 189–195].

    CAS  Google Scholar 

  15. Schenkels, P. and Duine, J.A., Nicotinoprotein (NADH-Containing) Alcohol Dehydrogenase from Rhodococcus erythropolis DSM 1069: an Efficient Catalyst for Coenzyme-Independent Oxidation of Broad Spectrum of Alcohols and Interconversion of Alcohols and Aldehydes, Microbiology, 2000, vol. 146, pp. 775–785.

    PubMed  CAS  Google Scholar 

  16. Suye, S., Purification and Properties of Alcohol Oxidase from Candida methanosorbosa M-2003, Curr. Microbiol., 1997, vol. 34, pp. 374–377.

    Article  PubMed  CAS  Google Scholar 

  17. Dailly, Y., Mat-Jan, F., and Clark, D.P., Novel Alcohol Dehydrogenase Activity in a Mutant of Salmonella Able to Use Ethanole As Carbon Source, FEMS Microbiol. Letts., 2001, vol. 201, no. 1, pp. 41–45.

    Article  CAS  Google Scholar 

  18. Bradford, M., A Rapid Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  19. Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya shkola, 1990.

    Google Scholar 

  20. Peng, X., Taki, H., and Komukai, S., Characterization of Four Rhodococcus Alcohol Dehydrogenase Genes Responsible for the Oxidation of Aromatic Alcohols, Appl. Microbiol. Biotechnol., 2006, vol. 71, pp. 824–832.

    Article  PubMed  CAS  Google Scholar 

  21. Reid, M.F. and Fewson, C.A., Molecular Characterization of Microbial Alcohol Dehydrogenases, Crit. Rev. Microbiol., 1994, vol. 20, pp. 13–56.

    Article  PubMed  CAS  Google Scholar 

  22. van Ophem, P.W., van Beeumen, J., and Duine, J.A., Nicotinoprotein [NAD(P)-Containing] Alcohol/Aldehyde Oxidoreductases. Purification and Characterization of a Novel Type from Amycolatopsis methanolica, Eur. J. Biochem., 1993, vol. 212, pp. 819–826.

    Article  PubMed  Google Scholar 

  23. Bruchhaus, I. and Tannich, E., Purification and Molecular Characterization of the NAD+-Dependent Acetalde hyde/Alcohol Dehydrogenase from Entamoeba histolytica, Biochem. J., 1994, vol. 303, no. 3, pp. 743–748.

    PubMed  CAS  Google Scholar 

  24. Cobessi, D., Tete-Favier, F., Marchal, S., Azza, S., Branlant, G., and Aubry, A., Apo and Holo Crystal Structures of an NADP-Dependent Aldehyde Dehydrogenase from Streptococcus mutans, J. Mol. Biol., 1999, vol. 290, no. 1, pp. 161–173.

    Article  PubMed  CAS  Google Scholar 

  25. Yan, R.T. and Chen, J.S., Coenzyme A-Acylating Aldehyde Dehydrogenase from Clostridium beijerinckii NRRL B592, Appl. Environ. Microbiol., 1990, vol. 56, no. 9, pp. 2591–2599.

    PubMed  CAS  Google Scholar 

  26. Jaureguibeitia, A., Saa, M., Llama, M.J., and Serra, J.L., Purification, Characterization and Cloning of Aldehyde Dehydrogenase from Rhodococcus erythropolis UPV-1, Appl. Microbiol. Biotechnol., 2007, vol. 73, pp. 1073–1086.

    Article  PubMed  CAS  Google Scholar 

  27. de Carvalho, S. and de Fonsesa, M., The remarkable Rhodosoccus erythropolis, Arrl. Microbiol. Biotechnol., 2005, vol. 67, pp. 715–726.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Pirog.

Additional information

Original Russian Text © T.P. Pirog, Yu.V. Korzh, T.A. Shevchuk, D.A. Tarasenko, 2008, published in Mikrobiologiya, 2008, Vol. 77, No. 6, pp. 749–757.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirog, T.P., Korzh, Y.V., Shevchuk, T.A. et al. Peculiarities of C2 metabolism and intensification of the synthesis of surface-active substances in Rhodococcus erythropolis EK-1 grown in ethanol. Microbiology 77, 665–673 (2008). https://doi.org/10.1134/S0026261708060039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261708060039

Key words

Navigation