Skip to main content
Log in

Obtaining Pseudomonas aurantiaca strains capable of overproduction of phenazine antibiotics

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

N-methyl-N′-nitro-N-nitrosoguanidine (NG)-induced mutagenesis with subsequent selection for resistance to toxic amino acid analogues (azaserine, m-fluoro-DL-phenylalanine, and 6-diazo-5-oxo-L-norleucine) was applied to Pseudomonas aurantiaca B-162. The resulting strains produced phenazine antibiotics three times more efficiently than the wild type strain and ten times more efficiently than the known pseudomonad strains. Overproduction of phenazine antibiotics was shown to result either from deregulation of 3-deoxy-D-arabinohepulosonate-7-phosphate synthase (DAHP synthase), the key enzyme of the aromatic pathway (removal of inhibition by phenylalanine, tyrosine, and phenazine), or overproduction of N-hexanoyl homoserine lactone, the regulatory molecules of positive control of cellular metabolism (QS systems).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cook, R.J., Thomashow, L.S., Weller, D.M., Fujimoto, D., Mazzola, M., Bangera, G., and Kim, D.S., Molecular Mechanisms of Defense by Rhizobacteria Against Root Disease, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, no. 10, pp. 4197–4201.

    Article  PubMed  CAS  Google Scholar 

  2. El-Banna, N. and Winkelmann, G., Pyrrolnitrin from Burkholderia cepacia: Antibiotic Activity Against Fungi and Novel Activities Against Streptomycetes, J. Appl. Microbiol., 1998, vol. 85, no. 1, pp. 69–78.

    Article  PubMed  CAS  Google Scholar 

  3. Whipps, J.M., Microbial Interactions and Biocontrol in the Rhizosphere, J. Experim. Bot., 2001, vol. 52, no. 1, pp. 487–511.

    CAS  Google Scholar 

  4. Dwivedi, D., Johri. B.N. Antifungals from Fluorescent Pseudomonads: Biosynthesis and Regulation, Curr. Sci., 2003, vol. 85, no. 12, pp. 1693–1703.

    CAS  Google Scholar 

  5. Mavrodi, D.V., Bleimling, N., Thomashow, L.S., and Blankenfeldt, W., The Purification, Crystallization and Preliminary Structural Characterization of PhzF, a Key Enzyme in the Phenazine-Biosynthesis Pathway from Pseudomonas fluorescens 2-79, Acta Crystallogr., 2004, vol. 60, no. 1, p. 184–186.

    Google Scholar 

  6. Mavrodi, D.V., Ksenzenko, V.N., Bonsall, R.F., Cook, R.J., Boronin, A.M., and Thomashow, L.S., A Seven-Gene Locus for Synthesis of Phenazine-1-Carboxylic Acid by Peudomonas fluorescens 2-79, J. Bacteriol., 1998, vol. 180, no. 9, pp. 2541–2548.

    PubMed  CAS  Google Scholar 

  7. Hassan, H.M. and Fridovich, I., Mechanism of the Antibiotic Action of Pyocyanine, J. Bacteriol., 1980, vol. 141, no. 1, pp. 156–163.

    PubMed  CAS  Google Scholar 

  8. Ahmad, S., Weisburg, W., and Jensen, R., Evolution of Aromatic Amino Acid Biosynthesis and Application to the Fine-Tuned Phylogenetic Positioning of Enteric Bacteria, J. Bacteriol., 1990, vol. 172, no. 2, pp. 1051–1061.

    PubMed  CAS  Google Scholar 

  9. Maksimova, N.P., Olekhnovich, I.N., and Fomichev, Yu.K., Regulation of 3-deoxy-D-arabinoheptulose-7-phosphate Synthase Synthesis in Pseudomonas Bacteria, Genetika, 1991, vol. 27, no. 2, pp. 217–221.

    PubMed  CAS  Google Scholar 

  10. Haas, D., Blumer, C., and Keel, C., Biocontrol Ability of Fluorescent Pseudomonads Genetically Dissecred: Importance of Positive Feedback Regulation, Curr. Opin. Biotechnol., 2000, vol. 11, no. 3, pp. 290–297.

    Article  PubMed  CAS  Google Scholar 

  11. Haas, D. and Keel, C., Regulation of Antibiotic Production in Root-Colonizing Pseudomonas spp. and Relevance for Biological Control of Plant Disease, Annu. Rev. Phytopathol., 2003, vol. 41, no. 1, pp. 117–153.

    Article  PubMed  CAS  Google Scholar 

  12. Feklistova, I.N. and Maksimova, N.P., Synthesis of Phenazine Compounds by Pseudomonas aurantiaca, Vest. Belorus. Un-ta, Ser. 2: Chemistry. Biology. Geography, 2005, no. 2, pp. 66–69.

  13. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  14. Levitch, M.E., Regulation of Aromatic Amino Acid Biosynthesis in Phenazine-Producing Strains, J. Bacteriol., 1970, vol. 103, no. 1, pp. 16–19.

    PubMed  CAS  Google Scholar 

  15. Jensen, R.A. and Nester, E.W., Regulatory Enzymes of Aromatic Amino Acid Biosynthesis in Bacillus subtilis, J. Biol. Chem., 1966, vol. 241, no. 14, pp. 3365–3372.

    PubMed  CAS  Google Scholar 

  16. McClean, K.H., Winson, M., Fish, L., Taylor, A., Chhabra, S.R., Camara, M., Daykin, M., Lamb, J.H., Swift, S., Bycroft, B.W., Stewart, G.S.A.B., and Williams, P., Bycroft, B.W., Stewart, G.S.A.B., and Williams, P., Quorum Sensing and Chromobacterium violaceum: Exploitation of Violacein Production and Inhibition for the Detection of N-Acylhomoserine Lactones, Microbiology (UK), 1997, vol. 143, no. 12, pp. 3703–3711.

    Article  CAS  Google Scholar 

  17. Huang, Z., Bonsall, R.F., Mavrodi, D.V., Weller, D.M., and Thomashow, L.S., Transformation of Pseudomonas fluorescens with Genes for Biosynthesis of Phenazine-1-Carboxylic Acid Improves Biocontrol of Rhizoctonia Root Rot and in situ Antibiotic Production, FEMS Microbiol. Ecol., 2004, vol. 49, no. 1, pp. 243–251.

    CAS  PubMed  Google Scholar 

  18. Wood, D., Gong, F., Daykin, M., Williams, P., and Pierson, L.S., N-Acyl-Homoserine Lactone-Mediated Regulation of Phenazine Gene Expression by Pseudomonas aureofaciens 30–84 in the Wheat Rhizosphere, J. Bacteriol., 1997, vol. 179, no. 24, pp. 7663–7670.

    PubMed  CAS  Google Scholar 

  19. Hermann, K.M., Biochemical and Genetic Studies of Aromatic Amino Acid Biosynthesis, J. Biochem., 1966, vol. 315, pp. 494–498.

    Google Scholar 

  20. Bertani, I. and Venturi, V., Regulation of the N-Acyl Homoserine Lactone-Dependent Quorum-Sensing System in Rhizosphere Pseudomonas putida WCS358 and Cross-Talk with the Stationary-Phase RpoS Sigma Factor and the Global Regulator GacA, Appl. Environ. Microbiol., 2004, vol. 70, no. 9, pp. 5493–5502.

    Article  PubMed  CAS  Google Scholar 

  21. Ge, Y., Huang, X., Wang, S., Zhang, X., and Xu, Y., Phenazine-1-Carboxylic Acid Is Negatively Regulated and Pyoluteorin Regulated by gacA in Pseudomonas sp. M18, FEMS Microbiol. Letts., 2004, vol. 237, no. 1, pp. 41–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Feklistova.

Additional information

Original Russian Text © I.N. Feklistova, N.P. Maksimova, 2008, published in Mikrobiologiya, 2008, Vol. 77, No. 2, pp. 207–212.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feklistova, I.N., Maksimova, N.P. Obtaining Pseudomonas aurantiaca strains capable of overproduction of phenazine antibiotics. Microbiology 77, 176–180 (2008). https://doi.org/10.1134/S0026261708020094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261708020094

Key words

Navigation