Skip to main content
Log in

Metabolism of the thermophilic bacterium Oceanithermus profundus

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The metabolism of the novel facultatively anaerobic thermophilic bacterium Oceanithermus profundus was studied during growth on maltose, acetate, pyruvate, and hydrogen. The utilization of carbohydrates was shown to proceed via the glycolytic pathway. Under microaerobic growth conditions, the metabolism of O. profundus grown on maltose depended on the substrate concentration. At an initial maltose concentration of 1.4 mM, O. profundus carried out oxygen respiration, and in the presence of 3.5 mM maltose, facilitated fermentation occurred, with the formation of acetate and ethanol and limited involvement of oxygen. The use of pyruvate and acetate occurred via the TCA cycle. In cells grown on acetate, the activity of glyoxylate pathway enzymes was revealed. Depending on the energy-yielding process providing for growth (oxygen respiration or nitrate reduction), cells contained cytochromes a and c or b, respectively. The results obtained demonstrate the plasticity of the metabolism of O. profundus, which thus appears to be well-adjusted to the rapidly changing conditions in deep-sea hydrothermal vents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams, R.A.D. and Da Costa, M.S., The Genus Thermus and Related Microorganisms, The Prokaryotes, 2nd ed., Balows A., Truper H. G., Dworkin M., Harder W., and Schleifer K.-H., Eds., New York: Springer, 1992, pp. 3745–3753.

    Google Scholar 

  2. Miroshnichenko, M.L., L’Haridon, S., Jeanthon, C., Antipov, A.N., Kostrikina, N.A., Chernyh, N.A., Tindall, B., Schumann, P., Spring, S., Stackebrandt, E., and Bonch-Osmolovskaya, E.A., Oceanithermus profundus gen. nov., sp. nov., a Thermophilic, Microaerophilic Facultatively Chemolithoheterotrophic Bacterium from a Deep-Sea Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 747–752.

    Article  PubMed  CAS  Google Scholar 

  3. Balch, W.E., Fox, G.E., Magnum, G.E., Woes, G.E., and Wolf, R.S., Methanogens: Reevaluation of Unique Biological Group, Microbiol. Rev., 1979, vol. 43, pp. 260–296.

    PubMed  CAS  Google Scholar 

  4. Wolin, E.A., Wolin, M.J., and Wolf, R.S., Formation of Methane by Bacterial Extracts, J. Biol. Chem., 1963, vol. 238, pp. 2882–2888.

    PubMed  CAS  Google Scholar 

  5. Miroshnichenko, M.L., Kostrikina, N.A., Chernyh, N.A., Pimenov, N.V., Tourova, T.P., Antipov, A.N., Spring, S., Stackenbrandt, E., and Bonch-Osmolovskaya, E.A., Caldithrix abyssi gen. nov., sp. nov., a Novel Thermophilic Nitrate-Reducing Bacterium from a Mid-Atlantic Ridge Hydrothermal Vent, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 323–329.

    Article  PubMed  CAS  Google Scholar 

  6. Manual of Methods for General Bacteriology, Gerhardt, P. et al., Eds., Washington: Am. Soc. Microbiol., 1981.

    Google Scholar 

  7. Lowry, O.H., Rosebrough, D.C., Farr, A., and Randall, K.G., Protein Measurement with the Folin Phenol Reagent, Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  Google Scholar 

  8. Fedosov, D.V., Podkopaeva, D.A., Miroshnichenko, M.L., Bonch-Osmolovskaya, E.A., Lebedinsky, A.V., and Grabovich, M.Yu., Investigation of the Catabolism of Acetate and Peptides in the New Anaerobic Thermophilic Bacterium Caldithrix abyssi, Mikrobiologiya, 2006, vol. 75, pp. 154–159 [Microbiology (Engl. Transl.), vol. 75, no. 2, pp. 119–124].

    Google Scholar 

  9. Grabovich, M.Yu., Dubinina, G.A., Churikova, V.V., Glushkov, A.F., and Churikov, S.N., Peculiarities of the Carbon Metabolism of the Colorless Sulfur Bacterium Macromonas bipunctata, Mikrobiologiya, 1993, vol. 62, pp. 421–429.

    CAS  Google Scholar 

  10. Gokarn, R.R., Eiteman, M.A., and Altman, E., Metabolic Analysis of Escherichia coli in the Presence and Absence of the Carboxylating Enzymes Phosphoenolpyruvate Carboxylase and Pyruvate Carboxylase, Appl. Environ. Microbiol., 2000, vol. 66, pp. 1844–1850.

    Article  PubMed  CAS  Google Scholar 

  11. Schramm, A., Siebers, B., Tjaden, B., Brinkmann, H., and Hensel, R., Pyruvate Kinase of the Hyperthermophilic Crenarchaeote Thermoproteus tenax: Physiological Role and Phylogenetic Aspects, J. Bacteriol., 2000, vol. 182, pp. 2001–2009.

    Article  PubMed  CAS  Google Scholar 

  12. Helo, H. and Sirevag, R., Autotrophic Growth and CO2 Fixation of Chloroflexus aurantiacus, Arch. Microbiol., 1986, vol. 145, pp. 173–180.

    Article  Google Scholar 

  13. Dubinina, G.A., Grabovich, M.Yu., and Chernyshova, Yu.Yu., The Role of Oxygen in the Regulation of the Metabolism of Aerotolerant Spirochetes, a Major Component of “Thiodendron” Bacterial Sulfur Mats, Mikrobiologiya, 2004, vol. 73, no. 6, pp. 725–733 [Microbiology (Engl. Transl.), vol. 73, no. 6, pp. 621–628].

    CAS  Google Scholar 

  14. Romanova, A.K., Biokhimicheskie metody izucheniya avtotrofii u mikroorganizmov (Biochemical Methods for Studying Autotrophy in Microorganisms), Moscow: Nauka, 1980.

    Google Scholar 

  15. Gossner, A.S., Devereux, R., Ohnemuller, N., Acker, G., Stackebrandt, E., and Drake, H.L., Thermicanus aegyptius gen. nov., sp. nov., Isolated from Oxic Soil, a Fermentative Microaerophile That Grows Commensally with the Thermophilic Acetogen Moorella thermoacetica, Appl. Environ. Microbiol., 1999, vol. 65, pp. 5124–5133.

    PubMed  CAS  Google Scholar 

  16. Singer, T.P.. and Edmondson, D.E., Mitochondrial Electron-Transport Inhibitors, Methods Enzymol., 1979, vol. 55 F, pp. 454–462.

    Article  Google Scholar 

  17. Degryse, E. and Glansdorff, N., Studies on the Central Metabolism of Thermus aquaticus, an Extreme Thermophilic Bacterium: Anaplerotic Reactions and Their Regulation, Arch. Microbiol., 1981, vol. 129, pp. 173–177.

    Article  CAS  Google Scholar 

  18. Henne, A., Bruggemann, H., Raasch, C., Wiezer, A., Hartsch, T., Liesegang, H., Johann, A., Lienard, T., Gohl, O., Martinez-Arias, R., Jacobi, C., Starkuviene, V., Schlenczeck, C., Dencker, S., Huber, R., Klenk, H.-P., Kramer, W., Merkl, R., Gottschalk, G., and Fritz, H.-J., The Genome Sequence of the Extreme Thermophile Thermus thermophilus, Nature Biotechnol., 2004, vol. 22, pp. 547–553.

    Article  CAS  Google Scholar 

  19. Niimura, Y., Koh, E., Uchimura, T., Ohara, N., and Kozaki, M., Aerobic and Anaerobic Metabolism in a Facultative Anaerobe Ep01 Lacking Cytochrome, Quinone and Catalase, FEMS Microbiol. Lett., 1989, vol. 61, pp. 79–84.

    Article  CAS  Google Scholar 

  20. Con, A.L., Active Role of Oxygen and NADH-Oxidase in Growth and Energy Metabolism of Leuconostoc, J. Gen. Microbiol., 1986, vol. 132, pp. 1789–1796.

    Google Scholar 

  21. Varghese, S., Tang, Y., and Imlay, J.A., Contrasting Sensitivities of Escherichia coli Aconitases A and B to Oxidation and Iron Depletion, J. Bacteriol., 2003, vol. 185, pp. 221–230.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Grabovich.

Additional information

Original Russian Text © D.V. Fedosov, D.A. Podkopaeva, M.L. Miroshnichenko, E.A. Bonch-Osmolovskaya, A.V. Lebedinsky, M.Yu. Grabovich, 2008, published in Mikrobiologiya, 2008, Vol. 77, No. 2, pp. 188–195.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedosov, D.V., Podkopaeva, D.A., Miroshnichenko, M.L. et al. Metabolism of the thermophilic bacterium Oceanithermus profundus . Microbiology 77, 159–165 (2008). https://doi.org/10.1134/S0026261708020069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261708020069

Key words

Navigation