Advertisement

Microbiology

, Volume 75, Issue 5, pp 512–545 | Cite as

Lithotrophic microorganisms of the oxidative cycles of sulfur and iron

  • G. I. Karavaiko
  • G. A. Dubinina
  • T. F. Kondrat’eva
Review

Abstract

The review deals with sulfur bacteria (the first chemolithotrophs ever studied) and with the acidophilic bacteria of sulfur and iron cycles which were investigated as a result of Winogradsky’s discovery. The diversity of these organisms and the factors and mechanism of its origin are emphasized; their metabolic functions and nutritional regulation are discussed.

Key words

colorless sulfur bacteria acidithiobacilli catabolism and anabolism ecophysiology variability strain polymorphism adaptation acidophily autotrophy mixotrophy heterotrophy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vinogradskii, S.N., Sulfur Bacteria. Nitrification, in Mikrobiologiya pochvy. Problemy i metody (Soil Microbiology: Problems and Methods), Moscow: Akad. Nauk SSSR, 1952, pp. 25–60.Google Scholar
  2. 2.
    Vinogradskii, S.N., Osnovy ekologicheskoi mikrobiologii (Basics of the Ecological Microbiology), Moscow: Akad. Nauk SSSR, 1952.Google Scholar
  3. 3.
    Schulz, H.N. and Jörgensen, B.B., Big Bacteria, Annu. Rev. Microbiol., 2001, vol. 55, pp. 105–137.PubMedCrossRefGoogle Scholar
  4. 4.
    Garrity, G.M., Bell, Y.A., and Lilburn, T., Family Thiothrichaceae fam. nov., Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 2, part B, pp. 131–179.Google Scholar
  5. 5.
    Dubinina, G.A., Rainey, F., and Kuenen, J.G., Genus Macromonas Utermöhl and Koppe in Koppe 1924, Bergey’s Manual of Systematic Bacteriology, 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 2, part C, pp. 721–724.Google Scholar
  6. 6.
    Kuenen, J.G. and Dubinina, G.A., Genus Thiospira Vislouk, Bergey’s Manual of Systematic Bacteriology, 2nd ed., Garrity, G.M., Ed., New York: Springer, 2005, vol. 2, part B, pp. 178–179.Google Scholar
  7. 7.
    Robertson, L.A., Kuenen, Y.G., Paster, B.Y., Dewhirst, F.E., and Vandamme, P., Cenus Thiovulum Hinze 1913, Bergey’s Manual of Systematic Bacteriology, 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 2, part B, pp. 1189–1191.Google Scholar
  8. 8.
    Dubinina, G.A., Leshcheva, N.V., and Grabovich, M.Yu., Isolation and Taxonomic Characterization of Colorless Sulfur Bacteria of the Genus Thiodendron, Mikrobiologiya, 1993, vol. 62, no. 4, pp. 717–732.Google Scholar
  9. 9.
    Guerrero, R., Haselton, A., Sole, M., Wier, A., and Margulis, L., Titanospirillum velox: a Huge Speedy Sulfur-Storing Spirillum from Ebro Delta Microbial Mats, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 11584–11588.PubMedCrossRefGoogle Scholar
  10. 10.
    Riviere, J.W.M and Kuenen, J.G, Genus Thiobacterium Nom. Rev., Bergey’s Manual of Systematic Bacteriology. 1st ed., Holt, J.G. et al., Eds., Baltimore: Williams. Wilkins Co, 2005, vol. 3, p. 1838.Google Scholar
  11. 11.
    Podkopaeva, D.A., Grabovich, M.Yu., Tourova, T.P., and Dubinina, G.A., The Functional Role of Reduced Inorganic Sulfur Compounds in the Metabolism of the Microaerophilic Bacterium Spirillum winogradskii, Mikrobiologiya, 2005, vol. 74, no. 1, pp. 17–25 [Microbiology (Engl. Transl.), vol. 74, no. 1, pp. 12–19].Google Scholar
  12. 12.
    Grabovich, M.Ju., Gavrish, E., Kuever, I., Lysenko, A., Podkopaeva, D., and Dubinina, G., Proposals of Giesbergeria gen. nov. for Giesbergeria voronezhensis sp. nov., G. kuznetsovii sp. nov. and Reclassification of [Aquaspirillum] anulus, [A.] sinuosum, [A.] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov., G. giesbergeri comb. nov. and of Simplicispira gen. nov. for [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha comb. nov. and S. psychrophila comb. nov., Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pp. 569–576.PubMedCrossRefGoogle Scholar
  13. 13.
    Grabovich, M.Yu., Biodiversity of Colorless Sulfur Bacteria: Taxonomy, Metabolism, and its Regulation, Extended Abstract of Doctoral (Biol.) Dissertation, Saratov, 2005.Google Scholar
  14. 14.
    Dul’tseva, N.M., Dubinina, G.A., and Lysenko, A.M., Isolation of Marine Filamentous Sulfur Bacteria and Description of the New Species Leucothrix thiophila sp. nov., Mikrobiologiya, 1996, vol. 65, no. 1, pp. 89–98 [Microbiology (Engl. Transl.), vol. 65, no. 1, pp. 70–87].Google Scholar
  15. 15.
    Grabovich, M.Yu., Dul’tseva, N.M., and Dubinina, G.A., Carbon and Sulfur Metabolism in Representatives of Two Clusters of Bacteria of the Genus Leucothrix: A Comparative Study, Mikrobiologiya, 2002, vol. 71, no. 3, pp. 301–307 [Microbiology (Engl. Transl.), vol. 71, no. 3, pp. 255–261].Google Scholar
  16. 16.
    Grabovich, M.Yu., Muntyan, M.S., Lebedeva, M.S., Ustiyan, V.S., and Dubinina, G.A., Lithotrophic Growth and Electron Chain Components of the Filamentous Glinding Bacterium Leucothrix mucor DSM 2157 During Oxidation of Sulfur Compounds, FEMS Microbiol. Lett., 1999, vol. 178, pp. 155–161.CrossRefGoogle Scholar
  17. 17.
    Grabovich, M.Yu., Akimov, V.N., Lysenko, A.M., Gridneva, E.V., Chernousova, E.V., and Dubinina, G.A., The First Representative of Lithotrophic Sulfur Bacterial Genus Sphaerotilus, S. gallus sp. nov., Isolated From Sulfide Springs of Psekup Mineral Waters, Mikrobiologiya (in press).Google Scholar
  18. 18.
    Larkin, J.M. and Henk, M.G., Filamentous Sulfide-Oxidizing Bacteria at Hydrocarbon Seeps on the Gulf of Mexico, Microsc. Res. Tech, 1996, vol. 33, pp. 23–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Strohl, W.R., Genus Beggiatoa Trevisan 1842, Bergey’s Manual of Systematic Bacteriology, 2nd ed, Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 2, part C, pp. 148–161.Google Scholar
  20. 20.
    Grabovich, M.Yu., Dubinina, G.A., Lebedeva, V.Yu., and Churikova, V.V., Mixotrophic and Lithoheterotrophic Growth of the Freshwater Filamentous Sulfur Bacterium Beggiatoa leptomitiformis D-402, Mikrobiologiya, 1998, vol. 67, no. 4, pp. 464–470 [Microbiology (Engl. Transl.), vol. 67, no. 4, pp. 383–388].Google Scholar
  21. 21.
    Grabovich, M.Yu., Patritskaya, V.Yu., Muntyan, M.S., and Dubinina, G.A., Lithoautorophic Growth of the Freshwater Strain Beggiatoa D402 and Energy Conservation in a Homogeneous Culture Under Microoxic Conditions, FEMS Microbiol. Lett., 2001, vol. 204, pp. 341–345.PubMedCrossRefGoogle Scholar
  22. 22.
    Schulz, H.N., Strotmann, B., Gallardo, V.A., and Jörgensen, B.B., Population Study of the Filamentous Sulfur Bacteria Thioploca spp. of the Bay Concepcion, Chile, Mar. Ecol. Progr. Ser., 2000, vol. 200, pp. 117–126.Google Scholar
  23. 23.
    Unz, R.F. and Head, I.M., Genus Thiothrix Winogradsky 1882, Bergey’s Manual of Systematic Bacteriology, 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 2, part C, pp. 131–142.Google Scholar
  24. 24.
    Kojima, H., Teske, A., and Fukui, M., Morphological and Phylogenetic Characterizations of Freshwater Thioploca Species from Lake Biwa, Japan and Lake Konstanz, Germany, Appl. Environ. Microbiol., 2003, vol. 69, pp. 390–398.PubMedCrossRefGoogle Scholar
  25. 25.
    Zemskaya, T.I., Namsaraev, B.B., Dul’tseva, N.M., Khanaeva, T.A., Golobokova, L.P., Dubinina, G.A., Dulov, L.E., and Vada, E., Ecophysiological Characteristics of the Mat-forming Bacterium Thioploca in Bottom Sediments of the Frolikha Bay, Northern Baikal, Mikrobiologiya, 2001, vol. 70, no. 3, pp. 391–397 [Microbiology (Engl. Transl.), vol. 70, no. 3, pp. 335–341].Google Scholar
  26. 26.
    Shulz, H.N., Brinkhoff, T.G., Ferdelman, T.G., Marine, M.H., Teske, A., and Jörgensen, B.B., Dense Populations of a Giant Sulfur Bacterium in Namibian Shelf Sediments, Science, 1999, vol. 284, pp. 493–495.CrossRefGoogle Scholar
  27. 27.
    Babenzin, H.-D., Glöckner, F.O., and Head, I.M., Genus Achromatium Schewiakoff 1893, Bergey’s Manual of Systematic Bacteriology, 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005 vol. 2, part B, pp. 142–147.Google Scholar
  28. 28.
    Starr, M.P. and Schmidt, J.M., Prokaryote Diversity, The Prokaryotes, Starr, M.P., Stolp, H., Trüper, H.G., Ballows, H., Shlegel, H.G., Eds., Berlin: Springer, 1981, vol. 1, pp. 3–42.Google Scholar
  29. 29.
    Wirsen, C.O. and Jannasch, H.W., Physiological and Morphological Observations on Thiovulum sp., J. Bacteriol., 1978, vol. 136, pp. 765–774.PubMedGoogle Scholar
  30. 30.
    Dubinina, G.A., Grabovich, M.Yu., Lysenko, A.M., and Chernykh, N.A., Revision of the Taxonomic Position of the Sulfur Spirilli of the Genus Thiospira and Description of the new Species Aquaspirillumbipunctata comb. nov., Mikrobiologiya, 1993, vol. 62, no. 6, pp. 1101–1112.Google Scholar
  31. 31.
    Chen, F., Gonzalez, J.M., Dustman, W.A., Moran, M.A., and Hodson, R.E., In Situ Reverse Transcription, an Approach to Character, Appl. Environ. Microbiol., 1997, vol. 63, pp. 4907–4913.PubMedGoogle Scholar
  32. 32.
    Güde, H., Strohl, W.R., and Larkin, J.M., Mixothrophic and Heterothophic Growth of Beggiatoa alba in Continuous Culture, Arch. Microbiol., 1981, vol. 129, pp. 357–360.PubMedCrossRefGoogle Scholar
  33. 33.
    Hagen, K.D. and Nelson, D.C., Use of Reduced Sulfur Compounds by Beggiatoa spp.: Enzymology and Physiology of Marine and Freshwater Strains in Homogencous and Gradient Cultures, App. Environ. Microbiol., 1997, vol. 63, pp. 3957–3964.Google Scholar
  34. 34.
    Spiridonova, E.M., Turova, T.P., Berg, I.A., Kolganova, T.V., Ivanovskii, R.N., and Kuznetsov, B.B., An Oligonucleotide Primer System for Amplification of the Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Genes of Bacteria of Various Taxonomic Groups, Mikrobiologiya, 2004, vol. 73, no. 3, pp. 377–387 [Microbiology (Engl. Transl.), vol. 73, no. 3, pp. 316–325].Google Scholar
  35. 35.
    Nelson, D.C. and Castenholz, R.W., Use of Reduced Sulfur Compounds by Beggiatoa Sp, J. Bacteriol., 1981, vol. 147, pp. 140–154.PubMedGoogle Scholar
  36. 36.
    Schmidt, T.M., Arieli, B., Cohen, Y., Padan, E., and Strohl, W.R., Sulfur Metabolism in Beggiatoa alba, J. Bacteriol., 1987, vol. 169, pp. 5466–5472.PubMedGoogle Scholar
  37. 37.
    Shively, J.M., Devore, W., Statford, L., Porter, L., Medlin, L., and Stevely, J.M., Molecular Evolution of the Large Subunit of Ribuloso-Bisphosphate Carboxylase Oxygenase (RUBISCO), FEMS Microbiol. Lett., 1986, vol. 37, pp. 251–257.CrossRefGoogle Scholar
  38. 38.
    Unz, R.F. and Williams, T.M., Substrate Untilization by Filamentous Sulur Bacteria of Activated Sludge, Recent Advances in Microbial Ecology., Proc. 5th Int. Symp. Microbial Ecol. (ISME), Hattori, J. and Morita, M., Eds., Tokyo: Japan Soc. Press, 1989, pp. 412–416.Google Scholar
  39. 39.
    Odintsova, E.V. and Dubinina, G.A., Thiothrix ramosa sp. nov., a New Colorless Sulfur Bacterium, Mikrobiologiya, 1991, vol. 59, no. 4, pp. 437–445.Google Scholar
  40. 40.
    Odintsova, E.V. and Dubinina, G.A., Role of Reduced Sulfur Compounds in Thiothrix ramosa Metabolism, Mikrobiologiya, 1993, vol. 62, no. 2, pp. 213–222.Google Scholar
  41. 41.
    Odintsova, E.V., Wood, A.P., and Kelly, D.P., Chemolithoautotrophic Growth of Thiothrix ramosa, Arch. Microbiol., 1993, vol. 160, pp. 152–157.CrossRefGoogle Scholar
  42. 42.
    Dul’tseva, N.M. and Dubinina, G.A., Thiothrix arctophila sp. nov., a New Species of Filamentous Colorless Sulfur Bacteria, Mikrobiologiya, 1994, vol. 63, no. 2, pp. 275–281.Google Scholar
  43. 43.
    Dul’tseva, N.M., Dubinina, G.A., and Lysenko, A.M., Isolation of Marine Filamentous Sulfur Bacteria and Description of the New Species Leucothrix thiophila sp. nov., Mikrobiologiya, 1996, vol. 65, no. 1, pp. 89–98 [Microbiology (Engl. Transl.), vol. 65, no. 1, pp. 79–87].Google Scholar
  44. 44.
    Howarth, R., Unz, R.F., Seviour, E.M., Seviour, R.J., Blackall, R.W., Pickup, J.G., Jones, J., Yaguhi, J., and Head, J.M., Phylogenetic Relationships of Filamentous Sulfur Bacteria (Thiothrix spp. and Eikelboom Type 021N Bacteria) Isolated from Waste Water: Treatment Plans and Description of Thiothrix eikelboomii, sp. nov., T. unzii sp. nov., T. fructosivorans sp. nov. and T. defluvii sp. nov., Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 1817–1827.PubMedGoogle Scholar
  45. 45.
    Nelson, D.C., Physiology and Biochemistry of Filamentous Bacteria, Autotrophic Bacteria, Schlegel, H.G. and Bowien, B., Eds., Berlin: Springer, 1989, pp. 219–238.Google Scholar
  46. 46.
    Hagen, K.D. and Nelson, D.C., Use of Reduced Sulfur Compounds by Beggiatoa spp.: Enzymology and Physiology of Marine and Freshwater Strains in Homogencous and Gradient Cultures, Appl. Environ. Microbiol., 1997, vol. 63, pp. 3957–3964.PubMedGoogle Scholar
  47. 47.
    Dubinina, G.A., Akimov, V.N., Chernousova, E.V., Lysenko, A.M., and Grabovich, M.N., New Lithotrophic Sulfur Bacteria of the Genus Thiothrix from Moderately Thermal Sulfide Springs, Mikrobiologiya (in press).Google Scholar
  48. 48.
    Mc. Hatton, S.C., Barry, J.P., Jannasch, H.W., and Nelson, D.C., High Nitrate Concentrations in Vacuolated, Autotrophic Marine Beggiatoa spp., Appl. Environ. Microbiol., 1996, vol. 62, pp. 954–958.Google Scholar
  49. 49.
    Maier, S.H., Volker, H., Beese, M., Gallardo, V.A., The Fine Structure of Thioploca araucae and Thioploca chileae, Can. J. Microbiol., 1990, vol. 36, pp. 438–448.Google Scholar
  50. 50.
    Nihino, M.H. and Nakajima, T., Dense Mat of Thioploca, Gliding Sulfur-Oxidiing Bacteria in Lake Biwa, Central Japan, Water Res., 1998, vol. 32, pp. 953–957.CrossRefGoogle Scholar
  51. 51.
    Otte, S., Kuenen, J.G., Nielsen, I.P., Paerl, H.W., Zopfi, J., Schulz, N.H., Teske, A., Strotmann, B., Gallardo, V.A., and Jörgensen, B.B., Nitrogen, Carbon and Sulfur Metabolism in Natural Thioploca Sample, Appl. Environ. Microbiol., 1999, vol. 65, pp. 3148–3157.PubMedGoogle Scholar
  52. 52.
    Fenchel, T. and Glud, R.N., Veil Architercutre in a Sulphide-Oxidizing Bacterium Enhances Counterconter Flux, Nature, 1998, vol. 394, pp. 367–369.CrossRefGoogle Scholar
  53. 53.
    Gray, N.D., Piscup, R.W., Jones, J.G., and Head, I.M., Ecophysiological Evidence That Achromaitium oxaliferum is Responsible for the Oxidation of Reduced Sulfur Species to Sulfate in a Freshwater Sediment, Appl. Environ. Microbiol., 1997, vol. 63, pp. 1905–1910.PubMedGoogle Scholar
  54. 54.
    Nesterov, A.I., Gorlenko, V.M., Starynin, D.A., Namsaraev, B.B., Dubinina, G.A., Dul’tseva, N.M., and Tarasov, V.G., Effect of Hydrothermal Influx on the Microbiological Processes of Organic Matter Synthesis in the Kraternaya Bay, in Melkovodnye gidrotermy i ekosistema bukhty Kraternaya, Yaponskoe more. Kniga 1. gl. 1 (Shallow-Water Hydrotherms and the Ecosystem of the Kraternaya Bay, Sea of Japan), Vladivostok: Izvo DVO AN SSSR, 1991, pp. 130–153.Google Scholar
  55. 55.
    Fossing, H., Gallardo, V.A., Jörgensen, B.B., Hiittel, M., Nielsen, L.P., Schulz, H., et al., Concentration and Transport of Nitrate by the Mat-Forming Sulphur Bacterium Thioploca, Nature, 1995, vol. 374, pp. 713–715.CrossRefGoogle Scholar
  56. 56.
    Jannasch, H.W., Nelson, D.C., and Wirsen, C.O., Massive Natural Occurrence of Unusually Large Bacteria (Beggiatoa sp.) at a Hydrothermal Deep-Sea Vent Site, Nature, 1989, vol. 342, pp. 834–836.CrossRefGoogle Scholar
  57. 57.
    Nelson, D.C., Waterbury, J.B., and Jannasch, H.W., Nitrogen fixation and Nitrate Utilization by Marine and Freshwater Beggiatoa, Arch. Microbiol., 1982, vol. 133, pp. 172–177.CrossRefGoogle Scholar
  58. 58.
    Sweerts, J.P.R.A., De Beers, D., Nielsen, S.P., Verdouw, H., Cohen, Y., and Cappenberg, T.E., Denitrification by Sulfur Oxidizing Beggiatoa spp. Mats on Freshwater Sediments, Nature, 1990, vol. 344, pp. 762–763.CrossRefGoogle Scholar
  59. 59.
    Kalanetra, K.M., Sherry, L., Huston, L., and Neson, D., Novel, Attached, Sulfur-Oxidizing Bacteria at Shallow Hydrothermal Vents Posses Vacuoles Not Involved in Respiratory Nitrate Accumulation, Appl. Environ. Microbiol., 2004, vol. 70, pp. 7487–7496.PubMedCrossRefGoogle Scholar
  60. 60.
    Dubinina, G.A., Colorless Sulfur Bacteria, in Khemosintez. K 100-letiyu otkrytiya S.N. Vinogradskim (Chemosynthesis. 100th Anniversary of S.N. Winogradsky’s Discovery), Moscow: Nauka, 1989, pp. 75–100.Google Scholar
  61. 61.
    Stepanova, I.Yu., Eprintsev, A.T., Falaleeva, M.I., Parfenova, N.V., Grabovich, M.Yu., Patritskaya, V.Yu., and Dubinina, G.A., Dependence of Malate Dehydrogenase Structure on the Type of Metabolism in Freshwater Filamentous Colorless Sulfur Bacteria of the Genus Beggiatoa, Mikrobiologiya, 2002, vol. 71, no. 4, pp. 445–451 [Microbiology (Engl. Transl.), vol. 71, no. 4, pp.377–382].Google Scholar
  62. 62.
    Eprintsev, A.T., Falaleeva, M.I., Grabovich, M.Yu., Parfenova, N.V., Kashirskaya, N.N., and Dubinina, G.A., The Role of Malate Dehydrogenase Isoforms in the Regulation of Anabolic and Catabolic Processes in the Colorless Sulfur Bacterium Beggiatoa leptomitiformis D-402, Mikrobiologiya, 2004, vol. 73, no. 4, pp. 437–432 [Microbiology (Engl. Transl.), vol. 73, no. 4, pp. 367–371].Google Scholar
  63. 63.
    Muntyan, M.S., Grabovich, M.Yu., Patritskaya, V.Yu., and Dubinina, G.A., Regulation of Metabolic and Electron Transport Pathways in the Freshwater Bacterium Beggiatoa leptomitiformis D-402, Mikrobiologiya, 2005, vol. 74, no. 4, pp. 452–459 [Microbiology (Engl. Transl.), vol. 74, no. 4, pp. 388–394].Google Scholar
  64. 64.
    Nelson, D.C., Wirsen, C.O., and Jannasch, A.W., Characterization of Large, Autotrophic Beggiatoa spp. Abundant at Hydrothermal Vent of Guaymas Basin, Appl. Environ. Microbiol, 1989, vol. 55, pp. 2909–2917.PubMedGoogle Scholar
  65. 65.
    Gallardo, V.A., Large Benthic Microbial Communities in Sulfide Biota Under Peru-Chile Subsurface Counter Current, Nature, 1977, vol. 286, pp. 331–332.CrossRefGoogle Scholar
  66. 66.
    Larkin, J.M. and Strohl, W.R., Beggiatoa, Thiothrix, and Thioploca, Annu. Rev. Microbiol., 1983, vol. 37, pp. 341–367.PubMedCrossRefGoogle Scholar
  67. 67.
    Williams, T.M. and Unz, R.F., Filamentous Sulfur Bacteria of Activated Sludge: Characterization of Thiothrix, Beggiatoa and Eikelboom Type 021 N Strain, Appl. Environ. Microbiol., 1985, vol. 49, pp. 887–898.PubMedGoogle Scholar
  68. 68.
    Fukui, A.M., Teske, A., Assmus, B., Muyzer, G., and Widdel, F., Phygiology, Phylogenetic Relationships, and Ecology of Filamentius Sulfate-Reducing Bacteria (Genus Desulfonema), Arch. Microbiol., 1999, vol. 172, pp. 193–203.PubMedCrossRefGoogle Scholar
  69. 69.
    Lein, A.Yu., Pimenov, N.V., Vinogradov, M.E., and Ivanov, M.V., CO2 Assimilation Rate and Bacterial Production of Organic Matter above the Hydrothermal Fields at 26N and 29N at the Mid-Atlantic Ridge, Okeanologiya, 1997, vol. 37, no. 3, pp. 396–407 [Oceanology (Engl. Transl.), vol. 37, no. 3].Google Scholar
  70. 70.
    Polz, M.F., Robinson, J.J., Cavanaugh, C.M., and Van Dover, C.L., Trophic Ecology of the Massive Aggregations of the Hydrothermal Vent Shrimp Rimicaris exoculata, Limnol. Oceanogr., 1998, vol. 43, pp. 1631–1638.CrossRefGoogle Scholar
  71. 71.
    Dulov, L.E., Lein, A.Yu., Dubinina, G.A., and Pimenov, N.V., Microbial Processes at the Lost City Vent Field, Mid-Atlantic Ridge, Mikrobiologiya, 2005, vol. 74, no. 1, pp. 111–118 [Microbiology (Engl. Transl.), vol. 74, no. 1, pp.97–104].Google Scholar
  72. 72.
    Perfil’ev, B.V., Thiodendron latens, a New Iron-Sulfur Microorganism and its Cultivation in Selective Cultures, Izv. Akad. Nauk SSSR, Ser. Biol., 1969, no. 2, pp. 181–196.Google Scholar
  73. 73.
    Podkopaeva, D.A., Grabovich, M.Yu., and Dubinina, G.A., Oxidative Stress and Antioxidant Cell Protection Systems in the Microaerophilic Bacterium Spirillum winogradskii, Mikrobiologiya, 2003, vol. 72, no. 5, pp. 600–608 [Microbiology (Engl. Transl.), vol. 72, no. 5, pp. 534–541].Google Scholar
  74. 74.
    Podkopaeva, D.A., Grabovich, M.Yu., and Dubinina, G.A., The Functional Role of Reduced Inorganic Sulfur Compounds in the Metabolism of the Microaerophilic Bacterium Spirillum winogradskii, Microbiologiya, 2005, vol. 74, no. 1, pp. 17–25 [Microbiology (Engl. Transl.), vol. 74, no. 1, pp. 12–19].Google Scholar
  75. 75.
    Dubinina, G.A., Grabovich, M.Yu., Churikova, V.V., Chekanova, Yu.A., and Leshcheva, N.V., N2O2 Production by Beggiatoa leptomitiformis, Mikrobiologiya, 1990, vol. 59, no. 4, pp. 425–431.Google Scholar
  76. 76.
    Chekanova, Yu.A. and Dubinina, G.A., Cytochemical Determination of Localization of N2O2 and Superoxide Radicals in Colorless Sulfur Bacteria, Mikrobiologiya, 1990, vol. 59, no. 5, pp. 856–861.Google Scholar
  77. 77.
    Akimenko, V.K., Cyanide-Resistant Respiration in Microorganisms, Uspekhi Mikrobiol., 1981, no. 5, pp. 3–30.Google Scholar
  78. 78.
    Perfil’ev, B.V., Thiodendron latens, a New Sulfur-Iron Microorganism and its Cultivation in Selective Cultures, Izv. Akad. Nauk SSSR, Ser. Biol., 1969, no. 2, pp. 181–196.Google Scholar
  79. 79.
    Dubinina, G.A., Grabovich, M.Yu., and Leshcheva, N.V., Structure, Distribution, and Metabolic Activity of the Thiodendron sulfur mats in Saline Reservoirs of Different Types, Mikrobiologiya, 1993, vol. 62, no. 3, pp. 340–350.Google Scholar
  80. 80.
    Dubinina, G.A., Grabovich, M.Yu., and Chernyshova, Yu.A., The Role of Oxygen in the Regulation of the Metabolism of Aerotolerant Spirochetes, a Major Component of “Thiodendron” Bacterial Sulfur Mats, Mikrobiologiya, 2004, vol. 73, no. 6, pp. 725–733 [Microbiology (Engl. Transl.), vol. 73, no. 6, pp. 621–628].Google Scholar
  81. 81.
    Leshcheva, R.V., Biological Characteristics of Colorless Sulfur Bacteria of the Genus Thiodendron, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 1997.Google Scholar
  82. 82.
    Surkov, A.V., Dubinina, G.A., Lysenko, A.M., Glökner, F.O., and Küever, J., Dethiosulfovibrio russensis sp. nov., Dethiosulfovibrio marinus sp. nov. and Dethiosulfovibrio acidaminovorans sp. nov., Novel Anaerobic, Thiosulfate-and Sulfur-Reducing Bacteria Isolated from Thiodendron Sulfur Mats in Different Saline Environments, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 327–337.PubMedGoogle Scholar
  83. 83.
    Brock, T.D. and Gustafson, J., Ferric-Iron Reduction by Sulfur-and Iron-Oxidizing Bacteria, Appl. Environ. Microbiol., 1976, vol. 32, pp. 567–571.PubMedGoogle Scholar
  84. 84.
    Golovacheva, R.S. and Karavaiko, G.I., Sulfobacillus thermosulfidooxidans gen. nov., sp. nov., a Facultatively Thermophilic Organism Isolated from a Sulfide Ore Deposit, Mikrobiologiya, 1978, vol. 47, no. 5, pp. 815–822.Google Scholar
  85. 85.
    Melamud, V.S., Pivovarova, T.A., Turova, T.P., Kolganova, T.V., Osipov, T.A., Lysenko, A.M., Kondrat’eva, T.F., and Karavaiko, G.I., Sulfobacillus sibiricus sp. nov., a New Moderately Thermophilic Bacterium, Mikrobiologiya, 2003, vol. 72, no. 5, pp. 681–688 [Microbiology (Engl. Transl.), vol. 72, no. 5, pp. 605–612].Google Scholar
  86. 86.
    Bogdanova, T.I., Tsaplina, I.A., Kondrat’eva, T.F., Duda, V.I., Suzina, N.E., Melamud, V.S., Turova, T.P., and Karavaiko, G.I., Sulfobacillus thermotolerans sp. nov., a Thermotolerant, Chemolithotrophic Bacterium, Int. J. Syst. Evol. Microbiol, 2006, vol. 56, pp. 1039–1042.PubMedCrossRefGoogle Scholar
  87. 87.
    Segerer, A., Neuner, A., Kristjansson, J.K., and Stetter, K.O., Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: Facultatively Aerobic, Extremely Acidophilic Thermophilic Sulfur-Metabolizing Archaebacteria, Int. J. Syst. Bacteriol., 1986, vol. 36, pp. 559–564.Google Scholar
  88. 88.
    Huber, H. and Stetter, K.O., Genus Acidianus, Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2001, pp. 202–204.Google Scholar
  89. 89.
    Huber, G., Spinler, C., Gambacorta, A., and Stetter, K.O., Metallosphaera sedula gen. and sp. nov. Represents a New Genus of Aerobic Metal-Mobilizing, Thermoacidophilic Archaebacteria, Syst. Appl. Microbiol., 1998, vol. 12, pp. 38–47.Google Scholar
  90. 90.
    Fuchs, T., Huber, H., Teiner, T., Burggraf, S., and Stetter, K.O., Metallosphaera prunae, sp. nov., a Novel Metal-Mobilizing, Thermoacidophilic Archaeum, Isolated from a Uranium Mine in Germany, Syst. Appl. Microbiol., 1995, vol. 18, pp. 560–566.Google Scholar
  91. 91.
    Karavaiko, G.I., Golyshina, O.V., Troitskii, A.V., Val’ekho-Roman, K.M., Golovacheva, R.S., and Pivovarova, T.A., Sulfurococcus yellowstonensis sp. nov., a New Species of Iron-and Sulfur-Oxidizing Thermoacidophilic Archaebacterium, Mikrobiologiya, 1994, vol. 63, no. 4, pp. 668–682.Google Scholar
  92. 92.
    Huber, G. and Stetter, K.O., Sulfolobus metallicus, sp. nov., a Novel Strictly Chemolithoautotrophic Thermophilic Archaeal Species of Metal-Mobilizers, Syst. Appl. Microbiol, 1991, vol. 14, pp. 372–378.Google Scholar
  93. 93.
    Markosyan, G.E., Leptospirillum ferrooxidans gen. nov. sp. nov, a New Iron-Oxidizing Bacterium, Armenian Biol., 1972, vol. 25, no. 2, pp. 26–29.Google Scholar
  94. 94.
    Johnson, D.B., Genus II. Leptospirillum, Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 2, part C, pp. 453–457.Google Scholar
  95. 95.
    Golovacheva, R.S., Golyshina, O.V., Karavaiko, G.I., Dorofeev, A.G., Pivovarova, T.A., and Chernykh, N.A., Leptospirillum thermoferrooxidans sp. nov., a New Iron-Oxidizing Bacterium, Mikrobiologiya, 1992, vol. 61, no. 6, pp. 1056–1065.Google Scholar
  96. 96.
    Clark, D.A. and Norris, P.R., Acidimicrobium ferrooxidans gen. nov., sp. nov.: Mixed-Culture Ferrous Iron Oxidation with Sulfobacillus Species, Microbiology (UK), 1996, vol. 142, pp. 785–790.Google Scholar
  97. 97.
    Golyshina, O.V., Pivovarova, T.A., Karavaiko, G.I., Kondrat’eva, T.F., Moore, E.R., Abraham, W.R., Lansdorf, H., Timmis, K., Yakimov, M.M., and Golyshin, P.N., Ferroplasma acidiphilum gen. nov., sp. nov., an Acidophilic, Autotrophic, Ferrous-Iron-Oxidizing Cell-Wall-Lacking, Mesophilic Member of the Ferroplasmaceae fam. nov., Comprising a Distinct Lineage of the Archaea, Int. J. Syst. Bacteriol., 2000, vol. 50, pp. 997–1006.Google Scholar
  98. 98.
    Pivovarova, T.A., Kondrat’eva, T.F., Batrakov, S.G., Esipov, S.E., Sheichenko, V.I., Bykova, S.A., Lysenko, A.M., and Karavaiko, G.I., Phenotypic Features of Ferroplasma acidiphilum Strains YT and Y-2, Mikrobiologiya, 2002, vol. 71, no. 6, pp. 1–10 [Microbiology (Engl. Transl.), vol. 71, no. 6, pp. 698–706].Google Scholar
  99. 99.
    Edwards, K.J., Bond, P.L., Gihring, T.M., and Baufield, J.F., An Archaeae Iron-Oxidizing Extreme Acidophile Important in Acid Mine Drainage, Science, 2000, vol. 287, pp. 1796–1799.PubMedCrossRefGoogle Scholar
  100. 100.
    Waksman, S.A. and Joffe, I.S., Microorganisms Concerned with the Oxidation of Sulfur in Soil. II Thiobacillus thiooxidans, a New Sulfur Oxidizing Organism Isolated from the Soil, J. Bacteriol., 1922, vol. 7, no. 2, pp. 239–256.PubMedGoogle Scholar
  101. 101.
    Kelly, D.P. and Wood, A.P., Genus I. Acidithiobacillus, Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 2, part B, pp. 60–62.Google Scholar
  102. 102.
    Hallberg, K.B. and Lindstrom, E.B., Characterization of Thiobacillus caldus sp. nov., a Moderately Thermophilic Acidophile, Microbiology (UK), 1994, vol. 140, pp. 3451–3456.Google Scholar
  103. 103.
    Bryant, R.D., Mc. Groarty, K.M., Costerton, J.W., Laishly, E.J., Isolation and Characterization of a New Acidophilic Thiobacillus Species (T. albertensis), Can. J. Microbiol., 1983, vol. 29, pp. 1159–1170.CrossRefGoogle Scholar
  104. 104.
    Brock, T.D., Brock, K.M., Belly, R.T., and Weiss, R.L., Sulfolobus: a New Genus of Sulfur-Oxidizing Bacteria Living at Low PH and High Temperature, Arch. Microbiol., 1973, vol. 84, pp. 54–68.Google Scholar
  105. 105.
    Huber, H. and Stetter, K.O., Genus I. Sulfolobus, Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2001, vol. 1, part B, pp. 198–200.Google Scholar
  106. 106.
    Huber, H. and Stetter, K.O. Genus I. Sulfolobus, Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2001, vol. 1, part B, pp. 201–202.Google Scholar
  107. 107.
    Huber, H. and Stetter, K.O. Genus I. Sulfolobus, Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2005, vol. 1, part B, p. 201.Google Scholar
  108. 108.
    Grogan, D., Palm, P., and Zillig, W., Isolate B12, Which Harbors a Virus-Like Element, Represents a New Species of the Archaebacterial Genus Sulfolobus, Sulfolobus shibatae, sp. nov., Arch. Microbiol., 1990, vol. 154, pp. 594–599.PubMedCrossRefGoogle Scholar
  109. 109.
    Takayanagi, S., Kawasaki, H., Sugimori, K., Yamada, T., Sugal, A., Ito, T., Yamasato, K., and Shioda, M., Sulfolobus hakonensis sp. nov., a Novel Species of Acidothermophilic Archaeon, Int. J. Syst. Bacteriol., 1996, vol. 46, no. 2, pp. 377–382.PubMedGoogle Scholar
  110. 110.
    Segerer, A., Neuner, A., Kristjansson, J.K., and Stetter, K.O., Acidianus infernus gen. nov., sp. nov. and Acidianus brierleyi comp. nov.: Facultatively Aerobic, Extremely Acidophilic Thermophilic Sulfur-Metabolizing Archaebacteria, Int. J. Syst. Bacteriol., 1986, vol. 36, pp. 559–564.CrossRefGoogle Scholar
  111. 111.
    Huber, H. and Stetter, K.O., Genus IV. Stygilobus, Bergey’s Manual of Systematic Bacteriology. 2nd ed., Garrity, G.M. et al., Eds., New York: Springer, 2001, vol. 1, part B, p. 207.Google Scholar
  112. 112.
    Segerer, A.H., Trincone, A., Gahrtz, M., and Stetter, K.O., Stygiolobus azoricus gen. nov., sp. nov., Represents a Novel Genus of Anaerobic, Extremely Thermoacidophilic Archaebacteria of the Order Sulfolobales, Int. J. Syst. Bacteriol., 1991, vol. 41, pp. 495–501.Google Scholar
  113. 113.
    Golovacheva, R.S., Val’ekho-Roman, K.M., and Troitskii, A.V., Sulfurococcus mirabilis gen. nov., sp. nov., a New Thermophilic Archaebacterium Capable of Sulfur Oxidation, Mikrobiologiya, 1987, vol. 56, pp. 100–107.Google Scholar
  114. 114.
    Fuchs, T., Huber, H., Burggraf, S., and Stetter, K.O., 16SrDNA-Based Phylogeny of the Archaeal Order Sulfolobales and Reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov., Syst. Appl. Microbiol, 1996, vol. 19, pp. 56–60.Google Scholar
  115. 115.
    Huber, H and Stetter, K.O., in Bergey’s Manual of Systematic Bacteriology. 2nd ed, Boone, D.K. and Castenholz, R.W., Eds., New York: Springer, 2001, pp. 202–204.Google Scholar
  116. 116.
    Karavaiko, G.I., Kondrat’eva, T.F., Pivovarova, T.A., and Muntyan, L.N., Physiological and Genetical Characterization of Some Thiobacillus ferrooxidans Strains Used in Biohydrometallurgy, Prikl. Biokhim. Mikrobiol., 1997, vol. 33, no. 5, pp. 532–538 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 33, no. 5, pp. 475–480].Google Scholar
  117. 117.
    Melamud, V.S., Pivovarova, T.A., Kondrat’eva, T.F., and Karavaiko, G.I., Study of Oxidation by Bacteria of a Difficult-to-Dress Gold-containing Pyrite-Arsenopyrite Concentrate under Moderately Thermophilic Conditions, Prikl. Biokhim. Mikrobiol., 1999, vol. 35, no. 2, pp. 182–189 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 35, no. 2, pp. 161–167].Google Scholar
  118. 118.
    Kondratyeva, T.F., Pivovarova, T.A., Muntyan, L.N., and Karavaiko, G.I., Strain Diversity in Thiobacillus ferrooxidans and its Significance in Biohydrometallugry, Biohydrometallurgy and the Environment toward the Mining of the 21st Century, Amils, R. and Ballester, A., Eds., 1999, part B, pp. 89–96.Google Scholar
  119. 119.
    Ageeva, S.N., Kondrat’eva, T.F., and Karavaiko, G.I., Phenotypic Characteristics of Thiobacillus ferrooxidans Strains, Mikrobiologiya, 2001, vol. 70, no. 2, pp. 226–234 [Microbiology (Engl. Transl.), vol. 70, no. 2, pp. 186–194].Google Scholar
  120. 120.
    Kondrat’eva, T.F., Tupikina, O.V., Ageeva, S.N., Samorukova, V.D., and Karavaiko, G.I., Variability of Chemolithotrophic Microorganisms as a Basis for the Regulation of their Activity Under Extreme Conditions, Biotechnology and Environment Including Biogeotechnology, Zaikov, G.E., Ed., New York: Nova Science Publ., 2004, pp. 133–145.Google Scholar
  121. 121.
    Karavaiko, G.I., Turova, T.P., Kondrat’eva, T.F., Lysenko, A.M., Kolganova, T.V., Ageeva, S.N., Muntyan, L.N., and Pivovarova, T.A., Phylogenetic Heterogeneity of the Species Acidithiobacillus ferrooxidans, Int. J. Syst. Evol. Microbiol, 2003, vol. 53, pp. 113–119.PubMedCrossRefGoogle Scholar
  122. 122.
    Kondratyeva, T.F., Muntyan, L.N., and Karavaiko, G.I., Zinc-and Arsenic Resistant Strains of Thiobacillus ferrooxidans Have Increased Copy Numbers of Chromosomal Resistance Genes, Microbiology (UK), 1995, vol. 141, pp. 1157–1162.Google Scholar
  123. 123.
    Haack, K. and Roth, J., Recombination Between Chromosomal IS200 Elements Supports Frequent Duplication Formation in Salmonella typhimurium, Genetics, 1995, vol. 141, pp. 1245–1252.PubMedGoogle Scholar
  124. 124.
    Pulgar V., Gaete, L., Allende, J., Orellana, O., Jordana, X., and Jedlicki, E., Isolation and Nucleotide Sequence of the Thiobacillus ferrooxidans Genes for the small and Large Subunits of Ribulose 1.5-bisphosphate carboxylase/oxygenase, FEBS Lett., 1991, vol. 292, no. 1, pp. 85–89.PubMedCrossRefGoogle Scholar
  125. 125.
    Kusano, T., Takeshima, T., Inoue, Ch., and Sugawara, K., Evidence for Two Sets of Structural Genes Coding for Ribulose Bisphosphate Carboxylase in Thiobacillus ferrooxidans, J. Bacteriol., 1991, vol. 173, pp. 7313–7323.PubMedGoogle Scholar
  126. 126.
    Holden, P.J. and Brown, R.W., Amplification of Ribulose Bisphosphate/Oxygenase Large Subunit (RuBisCo LCU) Gene Fragments from Thiobacillus ferrooxidans and Moderate Thermophile Using Polymerase Chain Reaction, FEMS Microbiol. Rev., 1993, vol. 11, pp. 19–30.PubMedCrossRefGoogle Scholar
  127. 127.
    Peng, H., Yang, Y., and Hu, Y., Molecular Diversity of the Gene of Fe(II)-oxidizing Enzyme of Acidithiobacillus ferrooxidans, 16th Int. Biohydrometallurgy Symposium. Abstracts, Harrison, S.T.L., Rawlings, D.E., and Petersen, J., Eds., Cape Town, 2005, pp. 176–178.Google Scholar
  128. 128.
    Rawlings, D.E. and Kusano, T., Molecular Genetics of Thiobacillus ferrooxidans, Microbiol. Rev., 1994, vol. 58, pp. 39–55.PubMedGoogle Scholar
  129. 129.
    Kondrat’eva, T.F., Ageeva, S.N., Muntyan, L.N., Pivovarova, T.A., and Karavaiko, G.I., Strain Polymorphism of the Plasmid Profiles in Acidithiobacillus ferrooxidans, Mikrobiologiya, 2002, vol. 71, no. 3, pp. 373–380 [Microbiology (Engl. Transl.), vol. 71, no. 3, pp. 319–325].Google Scholar
  130. 130.
    Tupikina, O.V., Kondrat’eva, T.F., Samorukova, V.D., Rassulov, V.A., and Karavaiko, G.I., Pheno-and Genotypic Caharacteristics of Acidithiobacillus ferrooxidans strains in relation to physicochemical properties of pyrites, 16th Int. Biohydrometallurgy Symposium. Abstracts, Harrison, S.T.L., Rawlings, D.E., and Petersen, J., Eds., Cape Town, 2005, pp. 705–715.Google Scholar
  131. 131.
    Yates, J.R. and Holmes, D.S., Two Families of Repeated DNA Sequences in Thiobacillus ferrooxidans, J. Bacteriol., 1987, vol. 169, pp. 1861–1870.PubMedGoogle Scholar
  132. 132.
    Chakravarty, L., Kittle, J.D., and Tuovinen, O.H., Insertion Sequence IST3091 of Thiobacillus ferrooxidans, Can. J. Biol., 1997, vol. 43, pp. 503–508.Google Scholar
  133. 133.
    Chakraborty, R., Deb, C., Lohia, A., and Roy, P., Cloning and Characterization of a High Copy Number Novel Insertion Sequence from Chemolithotrophic Thiobacillus ferrooxidans, Plasmid, 1997, vol. 38, pp. 129–134.PubMedCrossRefGoogle Scholar
  134. 134.
    Kondrat’eva, T.F., Danilevich, V.N., Ageeva, S.N., and Karavaiko, G.I., Identification of IS Elements in Acidithiobacillus ferrooxidans Grown in a Medium with Ferrous Iron or Adapted to Elemental Sulphur, Arch. Microbiol., 2005, vol. 183, pp. 1–10.CrossRefGoogle Scholar
  135. 135.
    Kondrat’eva, T.F. and Ageeva, S.N., Strain Genotypic Heterogeneity of Acidophilic Chemolithotrophic Microorganisms, Yubileinyi sbornik k 70-letiyu Instituta, (Proceedings of Winogradsky Institute of Microbiology, vol. 17. Collected Articles on the Institute 70th Anniversary), Gal’chenko, V.F., Ed., Moscow: Nauka, 2004.Google Scholar
  136. 136.
    Kondrat’eva, T.F., Melamud, V.S., Tsaplina, I.A., Bogdanova, T.I., Senyushkin, A.A., Pivovarova, T.A., and Karavaiko, G.I., Peculiarities in the Chromosomal DNA Structure in Sulfobacillus thermosulfidooxidans Analyzed by Pulsed-Field Gel Electrophoresis, Mikrobiologiya, 1998, vol. 67, no. 1, pp. 19–25 [Microbiology (Engl. Transl.), vol. 67, no. 1, pp. 13–18].Google Scholar
  137. 137.
    Kondrat’eva, T.F., Pivovarova, T.A., and Karavaiko, G.I., Peculiarities in the Chromosomal DNA Structure in Acidianus brierleyi and Ferriplasma acidophilum Grown under Varied Conditions, Mikrobiologiya, 1999, vol. 68, no. 4, pp. 508–513 [Microbiology (Engl. Transl.), vol. 68, no. 4, pp.443–447].Google Scholar
  138. 138.
    Kondrat’eva, T.F., Pivovarova, T.A., Muntyan, L.N., and Karavaiko, G.I., Structural Changes in the Chromosomal DNA of Thiobacillus ferrooxidans Cultivated on Media with Various Oxidation Substrates, Mikrobiologiya, 1996, vol. 65, no. 1, pp. 67–73 [Microbiology (Engl. Transl.), vol. 65, no. 1, pp. 59–64].Google Scholar
  139. 139.
    Kondrat’eva, T.F., Pivovarova, T.A., and Karavaiko, G.I., Peculiarities in the Structure of Chromosomal DNAs from Thiobacillus ferrooxidans Strains Adapted to Growth on Media with Pyrite or Elemental Sulfur, Mikrobiologiya, 1996, vol. 65, no. 5, pp. 675–681 [Microbiology (Engl. Transl.), vol. 65, no. 5, pp.591–596].Google Scholar
  140. 140.
    Kondrat’eva, T.F., Ageeva, S.N., Pivovarova, T.A., and Karavaiko, G.I., Restriction Profiles of the Chromosomal DNA from Acidithiobacillus ferrooxidans Strains Adapted to Different Oxidation Substrates, Mikrobiologiya, 2002, vol. 71, no. 4, pp. 514–520 [Microbiology (Engl. Transl.), vol. 71, no. 4, pp. 438–443].Google Scholar
  141. 141.
    Kondrat’eva, T.F., Pivovarova, T.A., Muntyan, L.N., Ageeva, S.N., and Karavaiko, G.I., The Strain Genotypic Heterogeneity of Chemolithotrophic Microorganisms, 15th Int. Biohydrometallurgy Symposium, Athens: Hellas, 2003, pp. 1379–1388.Google Scholar
  142. 142.
    Tupikina, O.V., Kondrat’eva, T.F., and Karavaiko, G.I., Dependence of the Phenotypic Characteristics of Acidithiobacillus ferrooxidans on the Physical, Chemical, and Electrophysical Properties of Pyrites, Mikrobiologiya, 2005, vol. 74, no. 5, pp. 604–608 [Microbiology (Engl. Transl.), vol. 74, no. 5, pp. 515–521].Google Scholar
  143. 143.
    Aggeva, S.N., Kondrat’eva, T.F., and Karavaiko, G.I., Plasmid Profiles of Acidithiobacillus ferrooxidans Strains Adapted to Different Oxidation Substrates, Mikrobiologiya, 2003, vol. 72, no. 5, pp. 651–657 [Microbiology (Engl. Transl.), vol. 72, no. 5, pp. 579–584].Google Scholar
  144. 144.
    Inoue, C., Sugawara, K., and Kusano, T., The MerR Regulatory Gene in Thiobacillus ferrooxidans Is Spaced Apart from the Mer Structural Genes, Mol. Microbiol., 1991, vol. 5, pp. 2707–2718.PubMedGoogle Scholar
  145. 145.
    Kondrat’eva, T.F., Danilevich, V.N., Ageeva, S.N., and Karavaiko, G.I., Interaction of Chromosomal and Plasmid DNA in Acidithiobacillus ferrooxidans Strains Adapted to Different Oxidation Substrates, Mikrobiologiya, 2004, vol. 73, no. 3, pp. 368–376 [Microbiology (Engl. Transl.), vol. 73, no. 3, pp. 308–315].Google Scholar
  146. 146.
    Holmes, D.S. and Haq, R.U., Adaptation of Thiobacillus ferrooxidans for Industrial Applications, Biohydrometallurgy, Salley, J. et al., Eds., Ottawa: CANMET, 1989, pp. 115–123.Google Scholar
  147. 147.
    Schrader, A. and Holmes, D.S., Phenotypic Switching of Thiobacillus ferrooxidans, J. Bacteriol., 1988, vol. 170, pp. 3915–3923.PubMedGoogle Scholar
  148. 148.
    Schrader, A. and Holmes, D.S., Insertion Sequence IST1 and Associated Phenotypic Switching in Thiobacillus ferrooxidans, Biohydrometallurgical Technologies, Torma, A.E. et al., Eds., Wyoming: Metals, Materials, 1993, vol. 2, pp. 667–671.Google Scholar
  149. 149.
    Cadiz, R., Gaete, L., Jedlicki, E., Yates, J., Holmes, D.S., and Orellana, O., Transposition of IST2 in Thiobacillus ferrooxidans, Mol. Microbiol., 1994, vol. 12, pp. 165–170.PubMedGoogle Scholar
  150. 150.
    Holmes, D.S., Jedlicki, E., Cabrejos, M.E., Bueno, S., Guacucano, M., Inostroza, C., Levican, G., Varela, P., and Garcia, E., The Use of Insertion Sequences to Analyze Gene Function in Thiobacillus ferrooxidans: a Case Study Involving Cytochrome c-type Biogenesis in Iron Oxidation, Biohydrometallurgy and the Environmental Toward the Mining of the 21st century, Amils, R. and Ballester, A., Eds., Elsevier, 1999, part B, pp. 139–147.Google Scholar
  151. 151.
    Ingledew, W.J., Cox, J.C., and Halling, P.J., A Proposed Mechanism for Energy Conservation During Fe2+ Oxidation by Thiobacillus ferrooxidans: Chemiosmotic Coupling To Net+ Influx, FEMS Microbiol. Lett., 1984, vol. 2, pp. 193–197.CrossRefGoogle Scholar
  152. 152.
    Cox, J.C. and Brand, M.D., Iron Oxidation and Energy Conservation in the Chemoautotroph Thiobacillus ferrooxidans, Microbial Chemoautotrophy, Strohl, W.R. and Tuovinen, O.H., Eds., Columbus: Ohio State Univ. Press, 1984, pp. 31–46.Google Scholar
  153. 153.
    Golyshina, O. and Timmis, K.N., Ferroplasma and Relatives, Recently Discovered Cell Wall-Lacking Archaea Making a Living in Extremely Acid, Heavy Metal-Rich Environments, Environ. Microbiol, 2005, vol. 7, pp. 1277–1288.PubMedCrossRefGoogle Scholar
  154. 154.
    Avakyan, A.A. and Karavaiko, G.I., Submicroscopic Organization of Thiobacillus ferrooxidans, Mikrobiologiya, 1970, vol. 39, no. 5, pp. 855–861.Google Scholar
  155. 155.
    Pivovarova, T.A. and Karavaiko, G.I., New Data on the Submicroscopic Organization of Thiobacillus thiooxidans, Mikrobiologiya, 1974, vol. 43, no. 2, pp. 282–284.Google Scholar
  156. 156.
    Severina, L.O., Senyushkin, A.A., and Karavaiko, G.I., Ultrastructure and Chemical Composition of Sulfobacillus thermosulfidooxidans S Layer, Dokl. Akad. Nauk, 1993, vol. 328, no. 5, pp. 633–636.Google Scholar
  157. 157.
    Severina, L.O., Bacterial S Layers, Mikrobiologiya, 1995, vol. 64, no. 6, pp. 725–733.Google Scholar
  158. 158.
    Duda, V.I., Suzina, N.E., Severina, L.O., Dmitriev, V.V., and Karavaiko, G.I., Formation of Flat Lammellar Inframembrane Lipid Structures in Microorganisms, J. Membr. Biol., 2001, vol. 180, pp. 33–48.PubMedCrossRefGoogle Scholar
  159. 159.
    Graham, L.L., Beveridge, T.J., and Nanninga, N., Periplasmic Space and the Concept of the Periplasm, Trends Biochem. Sci., 1991, vol. 16, pp. 328–329.PubMedCrossRefGoogle Scholar
  160. 160.
    Beveridge, T.J., The Periplasmic Space and the Periplasm in Gram-Positive and Gram-Negative Bacteria, Features, 1995, vol. 61, no. 3, pp. 125–130.Google Scholar
  161. 161.
    De Rosa, M. and Gambacorta, A., The Lipids of Archaebacteria, Prog. Lipid Res, 1988, vol. 27, pp. 153–175.PubMedCrossRefGoogle Scholar
  162. 162.
    Gambacorta, A., Trincone, A., Nicolaus, B., Lama, L., and De Rosa, M., Unique Features of Archaea, Syst. Appl. Microbiol., 1994, no. 16, pp. 518–527.Google Scholar
  163. 163.
    Batrakov, S.G., Pivovarova, T.A., Esipov, S.E., Sheichenko, V.I., and Karavaiko, G.I., D-Glucopyranosyl Caldarchaetidylglycerol Is the Main Lipid of the Acidophilic, Mesophilic, Ferrous Iron-Oxidizing Archaeon Ferroplasma acidiphilum, Biochim. Biophys. Acta, 2002, vol. 1581, pp. 29–35.PubMedGoogle Scholar
  164. 164.
    Tsaplina, I.A., Osipov, G.A., Bogdanova, T.I., Nedorezova, T.P., and Karavaiko, G.I., Fatty Acid Composition of the Lipids of a Thermoacidophilic Bacterium of the Genus Sulfobacillus, Mikrobiologiya, 1994, vol. 63, no. 5, pp. 821–830.Google Scholar
  165. 165.
    Maklady, J.L., Vestling, M.M., Baumler, D., Boekelheide, N., Kaspar, C.W., and Banfield, J.F., Tetraether-Linked Membrane Monolayers in Ferroplasma spp.: a Key To Survival in Acid, Extremophiles, 2004, vol. 8, pp. 411–419.CrossRefGoogle Scholar
  166. 166.
    Wood, A.P., Aurikko, J.P., and Kelly, P.A., Challenge for 21st Century Molecular Biology and Biochemistry: What Are the Causes of Obligate Autotrophy and Methanotrophy, FEMS Microbiol. Rev., 2004, vol. 28, pp. 335–352.PubMedCrossRefGoogle Scholar
  167. 167.
    Pronk, J.T., De Bruyn, J.C., Bos, P., and Kuenen, J.G., Anaerobic Growth of Thiobacillus ferrooxidans, Appl. Environ. Microbiol., 1992, vol. 58, pp. 2227–2230.PubMedGoogle Scholar
  168. 168.
    Egorova, M.A., Carbon Metabolism of Sulfobacillus BActeria, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2004.Google Scholar
  169. 169.
    Chain, P., Lamerding, G., Larimer, F., Regala, W., Lao, V., Land, M., and Hauser, L., et al., Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas europaea, J. Bacteriol., 2003, vol. 185, pp. 2759–2773.PubMedCrossRefGoogle Scholar
  170. 170.
    Amils, R., Irazabel, N., Moreira, D., Abad, J.P., and Marin, I., Genomic Organization of Acidophilic Chemolithotrophic Bacteria Using Pulsed Field Gel Electrophoretic Techniques, Biochemistry, 1998, vol. 80, pp. 911–921.CrossRefGoogle Scholar
  171. 171.
    Irazabel, N., Marin, I., and Amils, R., Genomic Organization of the Acidophilic Chemolithotrophic Bacterium Thiobacillus ferrooxidans ATCC 21834, J. Bacteriol., 1997, vol. 179, pp. 1946–1950.Google Scholar
  172. 172.
    Lysenko, A.M., Tsaplina, I.A., Golovacheva, R.S., Pivovarova, T.A., Vartanyan, N.S., and Karavaiko, G.I., Taxonomic Position of the Genus Sulfobacillus Determined by DNA Studies, Dokl. Akad. Nauk, 1987, vol. 294, no. 4, pp. 970–972.Google Scholar
  173. 173.
    Romanova, A.K., Chemoautotrophic Carbon Dioxide Assimilation in Khemosintez: K 100-letiyu otkrytiya S.N. Vinogradskim (Chemosynthesis: 100th Anniversary of S.N. Winogradsky Discovery), Moscow: Nauka, 1989, pp. 148–169.Google Scholar
  174. 174.
    Tsaplina, I.A., Krasil’nikova, E.N., Zakharchuk, L.M., Egorova, M.A., Bogdanova, T.I., and Karavaiko, G.I., Carbon Metabolism in Sulfobacillus thermosulfidooxidans subsp. asporogenes, Strain 41, Mikrobiologiya, 2000, vol. 69, no. 3, pp. 334–340 [Microbiology (Engl. Transl.), vol. 69, no. 3, pp. 270–276].Google Scholar
  175. 175.
    Zakharchuk, L.M., Egorova, M.A., Tsaplina, I.A., Bogdanova, T.I., Krasil’nikova, E.N., Melamud, V.S., and Karavaiko, G.I., Activity of the Enzymes of Carbon Metabolism in Sulfobacillus sibiricus under Various Conditions of Cultivation, Mikrobiologiya, 2003, vol. 72, no. 5, pp. 621–626 [Microbiology (Engl. Transl.), vol. 72, no. 5, pp. 553–557].Google Scholar
  176. 176.
    Egorova, M.A., Tsaplina, I.A., Zakharchuk, L.M., Bogdanova, T.I., and Krasil’nikova, E.N., Effect of Cultivation Conditions on the Growth and Activities of Sulfur Metabolism Enzymes and Carboxylases of Sulfobacillus thermosulfidooxidans subsp. asporogenes Strain 41, Prikl. Biokhim. Mikrobiol., 2004, vol. 40, no. 4, pp. 448–454 [Appl. Biochem. Microbiol. (Engl. Transl.), vol. 40, no. 4, pp. 381–387].PubMedGoogle Scholar
  177. 177.
    Karavaiko, G.I., Krasil’nikova, E.N., Tsaplina, I.A., Bogdanova, T.I., and Zakharchuk, L.M., Growth and Carbohydrate Metabolism of Sulfobacilli, Mikrobiologiya, 2001, vol. 70, no. 3, pp. 293–299 [Microbiology (Engl. Transl.), vol. 70, no. 3, pp. 245–250].Google Scholar
  178. 178.
    Wood, A.P. and Kelly, D.P., Autotrophic and Mixotrophic Growth of Three Thermoacidophilic Iron-Oxidizing Bacteria, FEMS Microbiol. Lett., 1983, vol. 20, pp. 107–112.CrossRefGoogle Scholar
  179. 179.
    Kandler, O. and Stetter, K.O., Evidence for Autotrophic CO2 Assimilation in Sulfolobus brirleyi Via a Reductive Carboxylic Acid Pathway, Zentr.-bl. Bakteriol., Parasitenk., Infektionskrankh., Hyg. I Abt. Orig. C, 1981, vol. 2, pp. 111–121.Google Scholar
  180. 180.
    Rawlings, D.E., Characteristics and Adaptability of Iron-and Sulfur-Oxidizing Microorganisms Used for the Recovery of Metals from Minerals and Their Concentrates, Microbial Cell Factories, 2005, vol. 4, p. 13.PubMedCrossRefGoogle Scholar
  181. 181.
    Varzabal, A., Brasseur, G., Ratouchniak, J., Lund, K., Lemesle-Meunier, D., De Moss, J.A., and Bonefoy, V., The High-Molecular-Weight Cytochrome c Cyc2 of Acidithiobacillus ferrooxidans Is An Outer Membrane Protein, J. Bacteriol., 2002, vol. 184, pp. 313–317.CrossRefGoogle Scholar
  182. 182.
    Sugio, T., Hirose, T., and LJ-Zhen, Y.E., Purification and Some Properties of Sulfite: Ferric Ion Oxidoreductase from Thiobacillus ferrooxidans, J. Bacteriol., 1992, vol. 174, pp. 4189–4192.PubMedGoogle Scholar
  183. 183.
    Munsch, R. and Sand, W., Acid-Stable Cytochromes in Ferrous Ion Oxidizing Cell-Free Preparations from Thiobacillus ferrooxidans, FEMS Microbiol. Lett., 1992, vol. 92, pp. 83–88.CrossRefGoogle Scholar
  184. 184.
    Sugio, T., White, K.J., Shute, E., Choate, D., and Blake, R.C., Existence of a Hydrogen Sulfide: Ferric Ion Oxidoreductase in Iron-Oxidizing Bacteria, Appl. Environ. Microbiol., 1992, vol. 58, pp. 431–433.PubMedGoogle Scholar
  185. 185.
    Blake, R.C. and Shute, E.A., Respiratory Enzymes of Thiobacillus ferrooxidans: Kinetic Properties of An Acidstable Iron: Rusticyanin Oxidoreductase, Biochemistry, 1994, vol. 33, pp. 9220–9228.PubMedCrossRefGoogle Scholar
  186. 186.
    Blake, IIR.C. and Shute, E.A., Purification and Characterization of a Novel Cytochrome from Leptospirillum ferrooxidans, Int. Biohydrom. Symp. IBS. Biomine, 97, Glenside, SA, Australia, 1997.Google Scholar
  187. 187.
    Schäfer, G., Engelgard, and Müller, V., Bioenergeties of the Archaea, Microbiol. Mol. Biol. Rev., 1999, vol. 63, pp. 570–620.PubMedGoogle Scholar
  188. 188.
    Gomes, C.M., Bandeiras, T.M., Teixeira, M., A New Type-II NADH Dehydrogenases from the Archaeon Acidianus ambivalents: Characterization and in Vitro Reconstruction of the Respiratory Chain, J. Bioenerg. Biomembr., 2001, vol. 33, pp. 1–8.PubMedCrossRefGoogle Scholar
  189. 189.
    Gomes, C.M., Limos, R.S., Teixeira, M., Ketzin, A., Huber, H., Stetter, K.O., Schafer, G., and Anemuller, S., The Unusual Non Sulfur Composition of the Acidianus ambivalens Succinate Dehydrogenase Complex, Biophys. Biochim. Acta, 1999, vol. 1411, pp. 134–141.CrossRefGoogle Scholar
  190. 190.
    Lemos, R.S., Gomes, C.M., and Teixeira, M., Acidianus ambivalens Complex II Typifies a Novel Family of Succinate Dehydrogenases, Biochem. Biophys. Res. Commun., 2001, vol. 281, pp. 141–150.PubMedCrossRefGoogle Scholar
  191. 191.
    Giuffre, A., Gomes, C.M., Antonini, G., D’Itrice, Teixeira, M., and Brunori, M., Functional Properties of the Quinol Oxidase from Acidianus ambivalens and the Possible Role of Its Electron Donor: Studies in the Membrane Integrated and Purified Enzyme, Eur. J. Biochem., 1997, vol. 250, pp. 383–388.PubMedCrossRefGoogle Scholar
  192. 192.
    Purschke, W.C., Schmidt, C.L., Petersen, A., Anemuller, S., and Schafer, G., The Terminal Quinol Oxidase of the Hyperthermophilic Archaeon Exhibits Unusual Submit Structure and Gene Organization, J. Bacteriol., 1997, vol. 179, pp. 1344–1353.PubMedGoogle Scholar
  193. 193.
    Lubben, M., Kolmerer, B., and Saraste, M., An Archaebacterial Terminal Oxidase Combines Core Structures of Two Mitochondrial Respiratory Complexes, EMBO J., 1992, vol. 11, pp. 805–812.PubMedGoogle Scholar
  194. 194.
    Castresana, J., Lubben, M., and Saraste, M., New Archaebacteria Genes Coding for Redox Proteins: Implication for the Evolution of Aerobic Metabolism, J. Mol. Biol., 1995, vol. 250, pp. 202–210.PubMedCrossRefGoogle Scholar
  195. 195.
    Lubben, M., Arnaud, S., Casfresana, J., Warne, A., Albracht, S.P.J., and Saraste, M., A Second Terminal Oxidase in Sulfolobus acidocaldarius, Eur. J. Biochem., 1994, vol. 224, pp. 151–159.PubMedCrossRefGoogle Scholar
  196. 196.
    Bandeiras, T.M., Salgueiro, C.A., Huber, H., Gomez, C.M., and Teixeira, M., The Respiratory Chain of the Thermophilic Archaeon Sulfolobus metallicus: Studies on the Type-II NADH Dehydrogenase, Biochim. Biophys. Acta, 2003, vol. 1557, pp. 13–19.PubMedCrossRefGoogle Scholar
  197. 197.
    Gomes, C.M., Huber, H., Stetter, K.O., and Teixeira, M., Evidence for a Novel Type of Iron Cluster in the Respiratory Chain of the Archaeon Sulfolobus metallicus, FEBS Lett., 1999, vol. 432, pp. 99–102.CrossRefGoogle Scholar
  198. 198.
    She, Q., Singh, R.K., Confaloniery, F., et al., The Complete Genome of the Crenarchaeon Sulfolobus solfataricus P2, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 7835–7840.PubMedCrossRefGoogle Scholar
  199. 199.
    De Rosa, M., De Rosa, A., Gambacorta, A., Minale, L., Thomson, R.H., and Worthington, R.D., Caldariellaquinone, a Unique Benzo-B-Thiophen-4,7-Quinone from Caldariella acidophila, An Extremely Thermophilic and Acidophilic Bacterium, J. Chem. Soc., Perkin Trans., 1977, vol. 1, pp. 653–657.CrossRefGoogle Scholar
  200. 200.
    Collins, M.D. and Langworthy, T.A., Respiratory Quinine Composition of Some Acidophilic Bacteria, Syst. Appl. Microbiol, 1983, vol. 4, pp. 295–304.Google Scholar
  201. 201.
    Thurl, S., Witke, W., and Buhrow, I., Schafer G Quinones from Archaebacteria. II. Different Types of Quinones from Sulphur-Dependent Archaebacteria, Biol. Chem. Hoppe-Seyler, 1986, vol. 367, pp. 191–197.PubMedGoogle Scholar
  202. 202.
    Lanzotti, V., Trincone, A., Gambacorta, A., De Rosa, M., and Breitmaier, E., 2H and 13C NMR Assignment of Benzothiophenquinones from the Sulfur-Oxidizing Archaebacterium Sulfolobus solfataricus, Eur. J. Biochem., 1986, vol. 160, pp. 37–40.PubMedCrossRefGoogle Scholar
  203. 203.
    Nicolaus, B., Trincone, A., Lama, L., Palmieri, G., and Gambacorta, A., Quinone Composition in Sulfolobus acidocaldarius Grown in Different Conditions, Syst. Appl. Microbiol., 1992, vol. 15, pp. 18–20.Google Scholar
  204. 204.
    Kerscher, J., Novitzki, S., and Oesterheit, D., Thermoacidophilic Archaebacteria Contain Bacterial-Type Ferredoxins Acting As Electron Acceptors of 2-Oxoacid: Ferredoxin Oxidoreductases, Eur. J. Biochem., 1982, vol. 128, pp. 223–230.PubMedCrossRefGoogle Scholar
  205. 205.
    Teixeira, M., Batista, R., Campos, A.P., Gomes, C., Mendes, J., Pacheco, I., Anemuller, S., and Hagen, R., A Seven-Iron Ferredoxin from the Thermoacidophilic Archaeon Desulfurococcus ambivalens, Eur. J. Biochem., 1995, vol. 227, pp. 322–327.PubMedCrossRefGoogle Scholar
  206. 206.
    Gomes, C.M., Faria, A., Carita, J.C., Mendes, J., Regalla, M., Chicau, P., Huber, H., Stetter, K.O., and Teixeira, M., Di-Claster, Seven-Iron Ferredoxins from Hyperthermophilic Sulfolobales, J. Biol. Inorg. Chem., 1998, vol. 3, pp. 499–507.CrossRefGoogle Scholar
  207. 207.
    Anemuller, S., Lubben, M., and Schafer, G., The Respiratory System of Sulfolobus acidocaldarius, a Thermoacidophilic Archaebacterium, FEBS Lett., 1985, vol. 193, pp. 83–87.CrossRefGoogle Scholar
  208. 208.
    Anemuller, S. and Schafer, G., Cytochrome aa 3 from the Thermoacidophilic Archaebacterium Sulfolobus acidocaldarius, FEBS Lett., 1989, vol. 244, pp. 451–455.CrossRefGoogle Scholar
  209. 209.
    Kawarabayasi, Y., Hino, Y., Horikawa, H., et al., Complete Genome Sequence of An Aerobic Thermoacidophilic Crenarchaeon Sulfolobus tokodaii Strain 7, DNA Res., 2001, vol. 8, pp. 123–140.PubMedCrossRefGoogle Scholar
  210. 210.
    Tyson, G.W., Chapman, J., Hugenholt, Z.P., Allen, E.E., Ram, R.J., Richardson, P.M., Solovyev, V.V., Rubin, E.M., Rokhsar, D.S., and Banfield, J.F., Community Structure and Metabolism Through Reconstruction of Microbial Genomes from the Environment, Nature, 2004, no. 428, pp. 37–43.Google Scholar
  211. 211.
    Komorowski, L., Verheyen, W., and Schafer, G., The Archaeal Respiratory Supercomplex SoxM from S. acidocaldarius, Combines Features of Quinole and Cytochrome c Oxidases, Biol. Chem., 2002, vol. 383, pp. 1791–1799.PubMedCrossRefGoogle Scholar
  212. 212.
    Dopson, M., Baker-Austin, C., and Bond, P.L., Analysis of Differential Protein Expression During Growth States of Ferroplasma Strains and Insights Into Electron Transport for Iron Oxidation, Microbiology (UK), 2005, vol. 151, pp. 4127–4137.PubMedCrossRefGoogle Scholar
  213. 213.
    Tikhonova, G.V., Lisenkova, L.A., Doman, N.G., and Skulachev, V.P., Patways of Electron Transport in Iron-Oxidizing Bacteria Thiobacillus ferrooxidans, Biokhimiya, 1967, vol. 32, no. 4, p. 725.Google Scholar
  214. 214.
    Kletzin, A., Coupled Enzymatic Production of Sulfite, Thiosulfate, and Hydrogen Sulfide from Sulfur: Purification and Properties of a Sulfur Oxigenase Reductase from the Facultatively Anaerobic Archaebacterium Desulfurolobus ambivalens, J. Bacteriol., 1989, vol. 171, pp. 1638–1643.PubMedGoogle Scholar
  215. 215.
    Muller, F., Bandeiras, T., Urich, T., Teixeira, M., Gomes, C.M., and Kletzin, A., Coupling of the Pathway of Sulphur Oxidation To Dioxygen Reduction: Characterization of a Novel Membrane-Bound Thiosulphate, Quinine Oxidoreductase, Nucleic Acid Res., 2004, vol. 53, pp. 1147–1160.Google Scholar
  216. 216.
    Zimmermann, P., Laska, S., and Kletzin, A., Two Modes of Sulfite Oxidation in the Extremely Thermophilic and Acidophilic Archaeon Acidianus ambivalens, Arch. Microbiol., 1999, vol. 172, pp. 76–82.PubMedCrossRefGoogle Scholar
  217. 217.
    Pimenov, N.V., Microbial Processes in Unloading Zones of Gas-Containing Fluids at the Ocean Bottom, Collected Articles on the Institute 70th Annivesary, M., Nauka, 2004, pp. 337–360 (in Russian).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • G. I. Karavaiko
    • 1
  • G. A. Dubinina
    • 1
  • T. F. Kondrat’eva
    • 1
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations