Skip to main content
Log in

The Application of Various Mineral Prospectivity Modeling in the Exploration of Orogenic Gold Deposit in Saqez-Sardasht Region, Northwest Iran

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The Saqez-Sardasht region (~2000) is located in the north Sanandaj-Sirjan Zone (SSZ), between longitudes of 46°00′67 00″ E to 46°30′00″ and latitudes of 36°00′00″ N to 36°30′00″, northwest Iran. The region was fully studied to recognize the promising areas for gold deposits using various methods of fuzzy fusion techniques. Accordingly, six evidential layers (i.e., lithological, tectonic, alteration, with Au, Sb, and W geochemical anomalies have been derived from three geo-data sets of geology, geochemistry, and remote sensing. A concentration–number (C–N) fractal method was used to determine the geochemical threshold values. The outcome was then combined, using the multiple indicator kriging (MIK) geochemical methods to improve the mineral potential mapping of gold deposits. In this study, four various fuzzy mineral prospectivity mapping (MPM) methods consisting of conventional VIKOR, modified VIKOR, multi-class index overlay, and Geo Fuzzy Inference System (GeoFIS) have been employed to detect the most promising areas in the Saqez-Sardasht region. The MPMs were numerically compared to each other based on the MPM efficiency index for the seven gold prospects in the study region. The Geo Fuzzy Inference System (GeoFIS) acquired 91.84% agreement, so it is selected as the superior technique to lead the prospect selection. With affiliation to the outcome of MPM maps, promising mineralized areas, controlled by shear zones, were located in the southwestern part of the Saqez region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Abzalov, M., Multiple indicator kriging, in Applied Mining Geology, Switzerland: Springer, 2016, pp. 291–294.

    Book  Google Scholar 

  2. Akbari, Z., Rasa, I., Mohajjel, M., Adabi, M.H., and Yarmohammadi, A.. Hydrothermal alteration identification of Ahangaran deposit, west of Iran using ASTER spectral analysis, J. Int. Geoinform. Res. Devel., 2015, no. 6, pp. 28–42.

  3. Aliyari, F., Rastad, E., and Zengqian, H., Orogenic gold mineralization in the Qolqoleh deposit, northwestern Iran, Resour. Geol., 2007, no. 57, pp. 269–282.

  4. Aliyari, F., Rastad, E., Mohajjel, M., and Arehart, G.B., Geology and geochemistry of D–O–C isotope systematics of the Qolqoleh gold deposit, northwestern Iran: Implications for ore genesis, Ore Geol. Rev., 2009, no. 36, pp. 306–314.

  5. Aliyari, F., Rastad, E., and Mohajjel, M., Gold deposits in the Sanandaj–Sirjan zone: Orogenic gold deposits or intrusion-related gold systems. Resour. Geol, 2012, no. 62, pp. 296–315.

  6. Aliyari, F., Rastad, E., Goldfarb, R.J., and Abdollahi S. J., Geochemistry of hydrothermal alteration in the Qolqoleh orogenic gold deposit, northwestern Iran, vectors for high grade orebodies. J. Geochem. Expl.. 2014, no. 140, pp. 111–125.

  7. Almasi, A., Yousefi, M., and Carranza, E.J.M., Prospectivity analysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran, Ore Geol. Rev., 2017, no. 91, pp. 1066–1080.

  8. Amer, R., Kusky, T., and El Mezayen, A., Remote sensing detection of gold related alteration zones in Um Rus area, Central eastern desert of Egypt. Adv. Space Res., 2012, no. 49, pp. 121–134.

  9. Angeles, J., A field investigation survey of the Kurdistan gold project (e.g., Qolqoleh, Kervian, and Qabaqloujeh), Geol. Surv. Iran, 2005, no. 35.

  10. Arfania, R. and Shahriari, S., Role of southeastern Sanandaj–Sirjan zone in the tectonic evolution of Zagros Orogenic Belt, Iran, Island Arc, 2009, no. 18, pp. 555–576.

  11. Bai, H., Cao, Y., Zhang, H., Zhang, C., Hou, S., and Wang, W., Combining fuzzy analytic hierarchy process with concentration–area fractal for mineral prospectivity mapping: A case study involving Qinling orogenic belt in central China, Appl. Geochem, 2021, no. 126, p. 104894.

  12. Babakhani, A.R., Hariri, A., and Farjandi, F., Geological Map of Saqez (1 : 100 000 Scale), Geol. Surv. Iran (GSI), 2003.

  13. Barak, S., Abedi, M., and Bahroudi, A., A knowledge-guided fuzzy inference approach for integrating geophysics, geochemistry, and geology data in a deposit-scale porphyry copper targeting, Saveh, Iran, Boll. Geofis. Teor. Appl., 2020, no. 61.

  14. Barak, S., Bahroudi, A., Aslani, S., and Mohebi, A., The geochemical anomaly separation by using the soil samples of eastern of Neysian, Isfahan Province, Geochemistry, 2016, no. 5, pp. 55–71.

  15. Barak, S., Bahroudi, A., and Jozanikohan, G., Exploration of Kahang porphyry copperdeposit using advanced integration of geological, remote sensing, geochemical, and magneticsdata. J. Min. Envir., 2018a, no. 9, pp. 19–39.

  16. Barak, S., Bahroudi, A., and Jozanikohan, G., The use of Fuzzy Inference System in the integration of copper exploration layers in Neysian, Iran. J. Min. Engin., 2018b, 13, pp. 21–35.

    Google Scholar 

  17. Barak, S., Imamalipour, A., Abedi, M., Bahroudi, A., and Khalifani F.M., Comprehensive modeling of mineral potential mapping by integration of multiset geosciences data, Geochemistry, 2021, no. 81(4), p. 125824.

  18. Ben-Dor, E., Kruse, F.A., Lefkoff, A.B., and Banin, A., Comparison of three calibration techniques for utilization of GER 63-channel aircraft scanner data of Makhtesh Ramon, Negev, Israel, Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 1995, no. 4, p. 32.

  19. Bierlein, F.P., Groves, D.I., Goldfarb, R.J., and Dubé, B., Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits, Miner. Deposita, 2006a, no. 40, p. 874.

  20. Bierlein, F.P., Murphy, F.C., Weinberg, R.F., and Lees, T., Distribution of orogenic golddeposits in relation to fault zones and gravity gradients: targeting tools applied to the Eastern Goldfields, Yilgarn Craton, Western Australia, Miner. Deposita, 2006b, no. 41, pp. 107–126.

  21. Carranza, E.J.M., Geochemical Anomaly and Mineral Prospectivity Mapping in GIS, Elsevier, 2009.

    Google Scholar 

  22. Carranza, E.J.M., Mangaoang, J.C., and Hale, M., Application of mineral exploration models and GIS to generate mineral potential map.s as input for optimum land-use planning in the Philippines, Nat. Resour. Res., 1999, no. 8, pp. 165–173.

  23. Carranza, E.J.M. and Laborte, A.G., Data-driven predictive mapping of gold prospectivity,Baguio district, Philippines: Application of Random Forests algorithm, Ore Geol. Rev., 2015, no. 71, pp. 777–787.

  24. Chang, C.L., A modified VIKOR method for multiple criteria analysis, Envir. Monit. Assessm., 2010, no. 168, pp. 339–344.

  25. Davis, J.C., Statistics and Data Analysis in Geology, Wiley, 2002.

    Google Scholar 

  26. Deng, J., Wang, Q., Yang, L., Wang, Y., Gong, Q., and Liu, H., Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province,China, J. Geochem. Explor., 2010, no. 105, pp. 95–105.

  27. Deutsch, C.V. and Journel, A.G., GSLIB :geostatistical software library and user’s guide, Version details – Trove [WWW Document], Clayton, V. D. and Andre, G. J., Eds., NewYork, 1992.

    Google Scholar 

  28. Fletcher, W.K., Stream sediment geochemistry in today’s exploration world, in Proc. Exploration '97˗4th Decennial Int. Conf. Miner. Expl., Gubins, A.G., Ed., 1997, pp. 249–260.

  29. Gałuszka, A., A review of geochemical background concepts and an example using data from Poland, Environ. Geol., 2007, no. 52, pp. 861–870.

  30. Ghasemi, A. and Talbot, C.J., A new tectonic scenario for the Sanandaj–Sirjan zone (Iran), J. Asian Earth Sci., 2006, no. 26, pp. 683–693.

  31. Goldfarb, R., Groves, D., and Gardoll, S., Orogenic gold and geologic time: a global synthesis, Ore Geol. Rev., 2001, no. 18, pp. 1–75.

  32. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F., Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types, Ore Geol. Rev., 1998, no. 13, pp. 7–27.

  33. Groves, D.I., Goldfarb, R.J., Knox-Robinson, C.M., Ojala, J., Gardoll, S., Yun, G.Y., and Holyland, P., Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration, Ore Geol. Rev., 2000, 17, pp. 1–38.

    Article  Google Scholar 

  34. Groves, D.I., Santosh, M., Goldfarb, R.J., and Zhang, L., Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits, Geosci. Front., 2018, no. 9, pp. 1163–1177.

  35. Grunsky, E.C., Drew, L.J., and Sutphin, D.M., Process recognition in multi-element soil and stream-sediment geochemical data. Appl. Geochem., 2009, no. 24, pp. 1602–1616.

  36. Gupta, U.G. and Clarke, R.E., Theory and applications of the Delphi technique: A bibliography (1975–1994), Technol. Forecast. Soc. Change, 1996, no. 53, pp. 185–211.

  37. Hale, M. and Plant, J.A., Drainage geochemistry, in Handbook of Exploration Geochemistry, Govett, G.J.S., Ed., Amsterdam: Elsevier, 1994, vol. 6.

    Google Scholar 

  38. Imamalipour, A. and Barak, S., Geochemistry and tectonic setting of the volcanic host rocks of VMS mineralisation in the Qezil Dash area, NW Iran: implications for prospecting of Cyprus-type VMS deposits in the Khoy ophiolite. Geol.Quarter., 2019, no. 63, pp. 435–473.

  39. Imamalipour, A., Barak, S., and Khalifani, F.M., Quantifying mass changes during hydrothermal alteration in listwaenite-type mercury mineralization, Tavreh area, northwestern Iran, Geochem.: Explor. Environm. Analysis, 2020, no. 20(4), pp. 425–439.

  40. Jozanikohan, G., Norouzi, G.H., Sahabi, F., Memarian, H., and Moshiri, B., The application of multilayer perceptron neural network in volume of clay estimation: case study of Shurijeh gas reservoir, Northeastern Iran, J. Natur. Gas Sci. Engin., 2015, no. 22, pp. 119–131.

  41. Jozanikohan, G., On the development of a non-linear calibration relationship for the purpose of clay content estimation from the natural gamma ray log, Int. J. Geo-Engin., 2017, no. 8(1), pp. 1–18.

  42. Heidari, S.M., Ghaderi, M., and Afzal, P., Delineating mineralized phases based on lithogeochemical data using multifractal model in Touzlar epithermal Au–Ag (Cu) deposit, NW Iran., Appl. Geochem., 2013, no. 31, pp. 119–132.

  43. Kasmaee, S. and Torab, F.M., Risk reduction in Sechahun iron ore deposit by geological boundary modification using multiple indicator Kriging, J. Cent. South Univ., 2014, no. 21, pp. 2011–2017.

  44. Kruse, F.A., Lefkoff, A.B., Boardman, J.W., Heidebrecht, K.B., Shapir,A.T., Barloon, P.J., and Goetz, A.F.H., The spectral image processing system (SIPS) interactive visualization and analysis of imaging spectrometer data, Remote Sensing Environm., 1993, no. 44, pp. 145–163.

  45. Lipton, I., Gaze, R., Horton, J., and Khosrowshahi, S., Practical application of multiple indicator kriging and conditional simulation to recoverable resource estimation for the Halley’s lateritic nickel deposit, in Symp. Beyond Ordinary Kriging: Non-Linear Geostatistical Methods in Practice, Perth, 1998, pp. 88–105.

  46. Ma, Y., Zhao, J., Sui, Y., Liao, S., and Zhang, Z., Application of knowledge-driven methods for mineral prospectivity mapping of polymetallic sulfide deposits in the Southwest Indian Ridge between 46° and 52° E, Minerals, 2020, nos. 10(11), p. 970.

  47. Mamdani, E.H. and Assilian, S., An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man-Machine Studies, 1975, no. 7, pp. 1–13.

  48. Mami Khalifani, F., Bahroudi, A., Barak, S., and Jozanikohan, G., Geochemical exploration of orogenic gold deposit using Concentration–number (C–N) fractal and probability-number (P.N) methods in the NW of the Sanandaj-Sirjan Zone, The 10th Iranian Economic Geology Conference, Univ. Isfahan, 2018a (in Persian).

  49. Mami Khalifani, F., Bahroudi, A., Barak, S., Abedi, M., and Mohammad Pour, M., Integrated exploration of orogenic gold mineralization in the northwest of Iran, Saqez area, The 10th Iran. Econ. Geol. Conf., Univ. Isfahan, 2018b (in Persian).

  50. Mami Khalifani, F., Bahroudi,A., Aliyari, F., Abedi, M., Yousefi, M., and Mohammadpour, M. Generation of an efficient structural evidence layer for mineral exploration targeting, J. Afr. Earth Sci., 2019a, no. 160, p. 103609.

  51. Mami Khalifani, F., Bahroudi, A., Barak, S., and Abedi, M., An integrated fuzzy AHP-VIKOR method for gold potential mapping in Saqez prospecting zone, Iran, Earth Observ. Geomatics Engin., 2019b, no. 3, pp. 21–33.

  52. Malekzadeh, M.H., Karimpour Stern, C.R., and Mazaheri, S.A., Hydrothermal alteration mapping in SW Birjand, Iran, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image processing, J. Appl. Sci., 2000, no. 9, pp. 829–842.

  53. Mavrantza, O. and Argialas, D.P., Implementation and evaluation of spatial filtering and edge detection techniques for lineament mapping: case study-Alevrada, Central Greece, in Remote Sensing for Environmental Monitoring, GIS Applications, and Geology (Int. Soc. Optics Photonics), 2003, no. 4886, pp. 417–429.

  54. Mirzaei, M., Afzal, P., Adi,b A., Khalajmasoumi, M., and Zarifi, A.Z., Prospection of iron and manganese using index overlay and fuzzy logic methods in Balvard 1:100,000 sheet, southeastern Iran, Iran J Earth Sci., 2014, no. 6, pp. 1–11.

  55. Mohajjel, M., Fergusson, C.L., and Sahandi, M.R., Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran, J. Asian Earth Sci., 2003, no. 21, pp. 397–412.

  56. Mohammadpour, M., Bahroudi, A., Abedi, M., Rahimipour, G., Jozanikohan, G., and Mami Khalifani, F., Geochemical distribution mapping by combining number-size multifractal model and multiple indicator kriging, J. Geochem. Expl., 2019, no. 200, pp. 13–26.

  57. Mohebi, A., Mirnejad, H., Lentz, D., Behzadi, M., Dolati, A., Kani, A., and Taghizadeh, H., Controls on porphyry Cu mineralization around Hanza Mountain, south-east of Iran: an analysis of structural evolution from remote sensing, geophysical, geochemical and geological data, Ore Geol. Rev., 2015, no. 69, pp. 187–198.

  58. Mohebi, A., Mirnejad, H., Lentz, D., and Behzadi, M., Using AHP method in GIS for PCDs potentialmapping in southeast of Iran, Acta Geol. Sinica, 2014, no. 88, pp. 1222–1224.

  59. Nforba, M.T., Egbenchung, K.A., Berinyuy, N.L., Mimba, M.E., Tangko, E.T., and Nono, G.D.K., Statistical evaluation of stream sediment geochemical data from Tchangue-Bikoui drainage system, southern Cameroon: a regional perspective, Geol., Ecol., Landscap., 2020, pp. 1–13.

    Google Scholar 

  60. Niroomand, S., Goldfarb, R.J., Moore, F., Mohajjel, M., and Marsh, E.E., The Kharapeh orogenic gold deposit: geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, northwestern Iran, Miner. Deposita, 2011, no. 46, pp. 409–428.

  61. Niroomand, S., Lentz, D., Sepidbar, F., Tajeddin, H.A., Hassanzadeh, J., and Mirnejad, H., Geochemical characteristics of igneous rocks associated with Baghu gold deposit in the Neotethyan Torud-ChahShirin segment, northern Iran, Geol. J., 2018, no. 55, pp. 299–316.

  62. Opricovic, S., Fuzzy VIKOR with an application to water resources planning, Expert Syst Appl., 2011, no. 38, pp. 12983–12990.

  63. Opricovic, S., Multicriteria Optimization of Civil Engineering Systems, Belgrade: Faculty Civil Eng., 1998.

    Google Scholar 

  64. Parsa, M. and Pour, A.B., A simulation-based framework for modulating the effects of subjectivity in greenfield mineral prospectivity mapping with geochemical and geological data, J. Geochem. Expl., 2021, no. 229, p. 106838.

  65. Parsa, M., Lentz, D.R., and Walker, J.A., Predictive modeling of prospectivity for VHMS mineral deposits, northeastern Bathurst mining camp, NB, Canada, using an ensemble regularization technique, Nat. Resourc. Res., 2022, pp. 1–18.

  66. Pirmoradi, A.R., Noorifard, M., and Salahi, M.A., Ecological study on malaria in Bandar Abbas district using geospatial information system (GIS), J. Army Univ. Med. Sci., 2012, no. 10, pp. 35–44.

    Google Scholar 

  67. Porwal, A., Das, R.D., Chaudhary, B., Gonzalez-Alvarez, I., and Kreuzer, O., Fuzzy inference systems for prospectivity modeling of mineral systems and a case-study for prospectivity mapping of surficial Uranium in Yeelirrie area, Western Australia, Ore Geol. Rev., 2015, no. 71, pp. 839–852.

  68. Pour, A.B. and Hashim, M., Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia, Ore Geol. Rev., 2015a, no. 64, pp. 13–22.

  69. Pour, A.B. and Hashim, M., Hydrothermal alteration mapping from Landsat-8 data, SarCheshmeh copper mining district, south-eastern Islamic Republic of Iran, J. Taibah Univ. Science, 2015b, no. 9, pp. 155–166.

  70. Rahmati, A., Afzal, P., Abrishamifar, S.A., and Sadeghi, B., Application of concentration–number and concentration–volume fractal models to delineate mineralized zones in the Sheytoor iron deposit, Central Iran, Arab. J. Geosci., 2015, no. 8, pp. 2953–2965

  71. Sadeghi, B., Khalajmasoumi, M., Afzal, P., and Moarefvand, P., Discrimination of iron high potential zones at the Zaghia iron ore deposit, Bafq, using index overlay GIS method, Iran J. Earth Sci., 2014, no. 6, pp. 91–98.

  72. Skulmoski, G.J., Hartman, F.T., and Krahn, J., The Delphi method for graduate research, J. Inform. Techn. Educ.: Research, 2007, no. 6, pp. 1–21.

  73. Sukumar, M., Performance evaluation of lineament extraction methods in ASTER satellite images, Int. J. Oceans Oceanogr., 2017, no. 11, pp. 249–263

  74. Tajeddin, H., Gold exploration in Saqqez-Piranshahr zone, Geol. Surv. Iran, Tehran, 2016 (in Persian).

    Google Scholar 

  75. Yilmaz, H., Geochemical exploration for gold in western Turkey: success and failure, J. Geochem. Expl., 2003a, no. 80, pp. 117–135.

  76. Yilmaz, H., Exploration at the Kuscayiri Au (Cu) prospect and its implications for porphyry-related Au (Cu) mineralization in western Turkey, J. Geochem. Expl., 2003b, no. 77, pp. 133−150.

  77. Yilmaz, H., Sönmez, F.N., and Carranza, E.J.M., Discovery of Au–Ag mineralization by streamsediment and soil geochemical exploration in metamorphic terrain in western Turkey, J. Geochem. Explor., 2015, no. 158, pp. 55–73.

  78. Yousefi, M., Kamkar-Rouhani, A., and Carranza, E.J.M., Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. J. Geochem. Expl., 2012, no. 115, pp. 24–35

  79. Yousefi, M., Carranza, E.J.M, and Kamkar-Rouhani, A., Weighted drainage catchment basin mapping of stream sediment geochemical anomalies for mineral potential mapping, J. Geochem. Expl., 2013, no. 128, pp. 88–96.

  80. Yousefi, M., Kamkar-Rouhani, A., and Carranza, E.J.M., Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping, Geochem: Expl. Environm. Analysis, 2014, no. 14, pp. 45–58.

  81. Yousefi, M., Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran, Ore Geol. Rev., 2017, no. 83, pp. 200–214

  82. Zhang, N., Zhou, K., and Du, X., Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China, J. Afr. Earth Sci., 2017, no. 128, pp. 84–96.

Download references

ACKNOWLEDGMENTS

The authors express special thanks to David Lentz for helping with some research aspects, as well as reading earlier versions of this manuscript. The authors gratefully appreciate the School of Mining Engineering, University of Tehran, for all support, and the Geological Survey of Iran (GSI) for data preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaneh Barak.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalifani, F.M., Imamalipour, A., Barak, S. et al. The Application of Various Mineral Prospectivity Modeling in the Exploration of Orogenic Gold Deposit in Saqez-Sardasht Region, Northwest Iran. Lithol Miner Resour 58, 368–386 (2023). https://doi.org/10.1134/S002449022370013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002449022370013X

Keywords:

Navigation