Skip to main content

Material Composition, Provenances, and Geodynamic Settings of the Accumulation of Cretaceous Deposits in the West Sakhalin Terrane


The results of studying the material composition of sandy rocks in Cretaceous deposits of the West Sakhalin Terrane are considered. Studies were carried out to reconstruct the paleogeodynamic environment of rock deposition in the terrane, as well as to determine the tectonic type and rock composition in the feeding sources (hereafter, provenances). Based on the mineral-geochemical parameters, sandstones in the terrane correspond to graywackes representing deposits of the petrogenic or first redeposition cycle (“first cycle”). Their detrital part includes products of the destruction of both basic–ultrabasic volcanic rocks and granite-metamorphic rocks. The deposits are characterized by a low degree of maturity of the clastic material formed mainly due to the mechanical destruction of rocks in provenances, weak lithodynamic processing of the material, and high rate of its burial. Paleogeodynamic interpretation of the obtained data was based on their comparison with the composition of ancient rocks and modern sediments accumulated in known geodynamic situations. The results obtained indicate that sediments were accumulated in the Cretaceous along the continent–ocean boundary in a basin associated with large-scale left-sided transform slips of the Izanagi Plate relative to the Eurasian continent. The provenance, which supplied the clastic material to this basin, combined the sialic land (granite-metamorphic and sedimentary rocks), a mature deeply dissected ensialic island arc, as well as fragments of the Sikhote-Alin accretion prisms formed with the participation of ophiolites.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. Bhatia, M.R., Plate tectonic and geochemical composition of sandstones, J. Geol., 1983, vol. 91, no. 6, pp. 611–627.

    Article  Google Scholar 

  2. Bhatia, M.R. and Crook, K.A.W., Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins, Contrib. Mineral. Petrol., 1986, vol. 92, pp. 181–193.

    Article  Google Scholar 

  3. Christie-Blick, N. and Biddle, K.T., Deformation and basin formation along strike-slip faults in Strike-Slip Deformation, Basin Formation, and Sedimentation, Biddle, K.T. and Christie-Blick, N., Eds.,: Soc Econ. Paleont. Mineral. Spec. Publ., 1985, vol. 37, pp. 1‒34.

  4. Cullers, R.L., Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near pueblo, CO, USA, Chem. Geol., 2002, vol. 191, pp. 305–327.

    Article  Google Scholar 

  5. Dickinson, W.R. and Suczek, C.A., Plate tectonics and sandstone composition, Am. Assoc. Petrol. Geol. Bull., 1979, vol. 63, no. 12, pp. 2164–2182.

    Google Scholar 

  6. Floyd, P.A. and Leveridge, B.E., Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones, J. Geol. Soc. London, 1987, vol. 144, pp. 531–542.

    Article  Google Scholar 

  7. Fournier, M., Jolivet, L., Huchon, P., et al., Neogene strike-slip faulting in Sakhalin and the Japan Sea opening, J. Geophys. Res., 1994, vol. 99, no. B2, pp. 2701–2725.

    Article  Google Scholar 

  8. Garzanti, E. and Ando, S., Plate tectonics and heavy mineral suites of modern sands, in Heavy Minerals in Use: Developments in Sedimentology, Mange, M.A. and Wright, D.T., Eds., Amsterdam: Elsevier, 2007, vol. 58, pp. 741–764.

    Google Scholar 

  9. Geodinamika, magmatizm i metallogeniya Vostoka Rossii (Geodynamics, Magmatism, and Metallogeny of Eastern Russia), Khanchuk, A.I., Ed., Vladivostok: Dal’nauka, 2006.

    Google Scholar 

  10. Geologiya, geodinamika i perspektivy neftegazonosnosti osadochnykh basseinov Tatarskogo proliva (Geology, Geodynamics, and Perspectives of Oil-and-Gas Potential of Sedimentary Basins in the Tatar Strait), Kirillova, G. L., Ed., Vladivostok: DVO RAN, 2004.

    Google Scholar 

  11. Golozubov, V.V., Tektonika yurskikh i nizhnemelovykh kompleksov severo-zapadnogo obramleniya Tikhogo okeana (Tectonics of Jurassic and Lower Cretaceous Complexes in the Northwestern Framing of the Pacific Ocean), Vladivostok: Dal’nauka, 2006.

  12. Golozubov, V.V., Kasatkin, S.A., Malinovsky, A.I., et al., Dislocations of the Cretaceous and Cenozoic complexes of the northern part of the West Sakhalin Terrane, Geotectonics, 2016, no. 4, pp. 439–445.

  13. Kiminami, K., Kumon, F., Nishimura, T., and Shiki, T., Chemical composition of sandstones derived from magmatic arcs, in Composition and Origin of Clastic Rocks from Mobile Belts (Examples from the Japanese Islands ), Mem. Geol. Soc. Japan, 1992, no. 38, pp. 361–372.

  14. Letnikova, E.F., Veshcheva, S.V., Proshenkin, A.I., et al., Neoproterozoic terrigenous rocks in the Tuva–Mongolia massif: Geochemical correlation, discharge sources, and geodynamic reconstruction, Geol. Geofiz., 2011, vol. 52, no. 12, pp. 2110–2121.

    Google Scholar 

  15. Lyakhovich, V.V., Aktsessornye mineraly gornykh porod (Accessory Minerals in Rocks), Moscow: Nedra, 1979.

  16. Malinovsky, A.I., Lithological composition of island-arc complexes in the Russian Far East, Lithol. Miner. Resour., 2010, no. 1, pp. 24–38.

  17. Malinovsky, A.I., Geochemical features and geodynamic settings of the formation of Cretaceous terrigenous rocks of the West Sakhalin Terrane, Lithol. Miner. Resour., 2018, no. 2, pp. 140–158.

  18. Malinovsky, A.I., Paleogeodynamic reconstruction of Cenozoic sedimentation settings on the West Sakhalin terrane based on the material composition of terrigenous Rocks, Lithol. Miner. Resour., 2021, no. 1, pp. 24–48.

  19. Malinovsky, A.I. and Golozubov, V.V., Structure, composition, and depositional environments of the Lower Cretaceous rocks of the Zhuravlevka Terrane, Central Sikhote-Alin, Lithol. Miner. Resour., 2012, no. 4, pp. 355–370.

  20. Malinovsky, A.I., Golozubov, V.V., Simanenko, V.P., et al., The Kema terrane (eastern Sikhote-Alin) – fragment of Early Creataceous island-arc system at the eastern margin of Asia, Tikhookean. Geol., 2005, vol. 24, no. 6, pp. 38–59.

    Google Scholar 

  21. Malinovsky, A.I., Markevich, P.V., and Tuchkova, M.I., Heavy clastic minerals in terrigenous rocks: Indicators of geodynamic settings in paleobasins in orogenic regions in eastern Asia, Vestn. KRAUNTs. Nauki Zemle, 2006, no. 2, pp. 97–111.

  22. Markevich, P.V., Filippov, A.N., Malinovsky, A.I., et al., Geosinklinal’nyi litogenez na granitse kontinent–okean (Geosynclinal Lithogenesis at the Continent–Ocean Boundary), Moscow: Nauka, 1987.

  23. Markevich, P.V., Filippov, A.N., Malinovsky, A.I., et al., Melovye vulkanogenno-osadochnye obrazovaniya Nizhnego Priamur’ya (Cretaceous Volcanosedimentary Rocks in the Lower Amur region), Vladivostok: Dal’nauka, 1997.

  24. Markevich, P.V., Konovalov, V.P., Malinovsky, A.I., and Filippov, A.N., Nizhnemelovye otlozheniya Sikhote-Alinya (Lower Cretaceous rocks in Sikhote-Alin), Vladivostok: Dal’nauka, 2000.

  25. Markevich, P.V., Malinovsky, A.I., Tuchkova, M.I., et al., The use of heavy minerals in determining the provenance and tectonic evolution of Mesozoic and Cenozoic sedimentary basins in the continent—Pacific Ocean transition zone: examples from Sikhote-Alin and Koryak-Kamchatka Regions (Russian Far-East) and Western Pacific in Heavy Minerals in Use. Developments in sedimentology, Mange, M.A. and Wright, D.T., Eds., Amsterdam: Elsevier, 2007, vol. 58, pp. 789–822.

    Google Scholar 

  26. Marsaglia, K.M. and Ingersoll, R.V., Compositional trends in arc-related, deep-marine sand and sandstone: A reassessment of magmatic-arc provenance, Geol. Soc. Am. Bull., 1992, vol. 104, no. 10, pp. 1637–1649.

    Article  Google Scholar 

  27. Maslov, A.V., Mizens, G.A., Podkovyrov, V.N., et al., Synorogenic psammites: Major lithochemical features, Lithol. Miner. Resour., 2013, no. 1, pp. 74–99.

  28. Maslov, A.V., Podkovyrov, V.N., Mizens, G.A., et al., Tectonic setting discrimination diagrams for terrigenous rocks: a comparison, Geochem. Int., 2016, no. 7, pp. 569–583.

  29. Maslov, A.V., Podkovyrov, V.N., Gareev, E.Z., and Nozhkin, A.D., Synrift sandstones and mudstones: Bulk chemical composition and position in some discriminant paleogeodynamic diagrams, Lithol. Miner. Resour., 2019, no. 5, pp. 390–411.

  30. Maynard, J.B., Valloni, R., and Yu, H.S., Composition of modern deep-sea sands from arc-related basins in Trench-Forearc Geology: Sedimentation and Tectonics on Modern and Ancient Active Plate Margins, Leggett, J.K., Ed., Oxford: Blackwell Sci. Publ., 1982, part 2, pp. 551–61.

  31. Melankholina, E.N., Tektonika severo-zapadnoi Patsifiki: sootnoshenie struktur okeana i kontinental’noi okrainy (Tectonics of the Northwestern Pacific: Correlation of Structures in the Ocean and Continental Margin), Moscow: Nauka, 1988.

  32. Morton, A.C. and Hallsworth, C., Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones, Sedim. Geol., 1994, vol. 90, nos. 3/4, pp. 241–256.

    Article  Google Scholar 

  33. Morton, A.C., Meinhold, G., Howard, J.P., et al., A heavy mineral study of sandstones from the eastern Murzuq Basin, Libya: constraints on provenance and stratigraphic correlation, J. Afr. Earth Sci., 2011, vol. 61, no. 4, pp. 308–330.

    Article  Google Scholar 

  34. Natal’in, B.A., Mesozoic accretion system and collision tectonics in the southern part of Russian Far East, Tikhookean. Geol., 1991, no. 5, pp. 3–23.

  35. Nechaev, V.P., Evolution of the Philippine and Japan Seas from the clastic sediment record, Mar. Geol., 1991, vol. 97, nos. 1/2, pp. 167–190.

    Article  Google Scholar 

  36. Nechaev, V.P. and Isphording, W.C., Heavy-mineral assemblages of continental margins as indicators of plate tectonic environments, J. Sedim. Petrol., 1993, vol. 63, no. 6, pp. 1110–1117.

    Google Scholar 

  37. Nesbitt, H.W. and Young, G.M., Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 1982, vol. 299, pp. 715–717.

    Article  Google Scholar 

  38. Nisbet, E.G. and Pearce, J.A., Clinopyroxene composition in mafic lavas from different tectonic settings, Contrib. Mineral. Petrol., 1977, vol. 63, pp. 149–160.

    Article  Google Scholar 

  39. Opornyi razrez melovykh otlozhenii Sakhalina (Naibinskii razrez) (Reference Section of Cretaceous Rocks in Sakhalin: The Naiba Section), Poyarkov, Z.N., Ed., Leningrad: Nauka, 1987.

    Google Scholar 

  40. Parfenov, L.M., Kontinental’nye okrainy i ostrovnye dugi mezozoid Severo-Vostoka Azii (Continental Margins and Island Arcs of Mesozoides in Northeast Asia), Novosibirsk: Nauka, 1984.

  41. Pettijohn, F.J., Potter, R., and Siever, R., Sand and Sandstone, Heidelberg: Springer, 1972. Translated under the title Peski i peschaniki, Moscow: Mir, 1976.

  42. Roser, B.P. and Korsch, R.J., Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio, J. Geol., 1986, vol. 94, no. 5, pp. 635–650.

    Article  Google Scholar 

  43. Roser, B.P. and Korsch, R.J., Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data, Chem. Geol., 1988, vol. 67, pp. 119–139.

    Article  Google Scholar 

  44. Sengör, A.M.C. and Natal’in, B.A., Rifts of the world, in Mantle Plumes: Their Identification through Time, Ernst, R.E. and Buchan, K.L., Eds., Geol. Soc. Am. Spec. Pap., 2001, vol. 352, pp. 389‒482.

    Google Scholar 

  45. Sengör, A.M.C., Sedimentation and tectonics of fossil rifts, in Tectonics of Sedimentary Basins, Busby, C.J., Ingersoll, R.V., Eds., Oxford: Blackwell, 1995, pp. 53–117.

    Google Scholar 

  46. Shcheka, S.A. and Vrzhosek, A.A., Ultrabasic volcanism of the Pacific Complex and issues of the systematics of meimechites and komatiites, Vulkanol. Seismol., 1983, no. 2, pp. 3‒16.

  47. Shutov, V.D., Classification of sandstones, Litol. Polezn. Iskop., 1967, no. 5, pp. 86‒102.

  48. Simanovich, I.M., Kvarts peschanykh porod (Quartz in Sandy Rocks), Moscow: Nauka, 1978.

  49. Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Composition and Evolution, Oxford: Blackwell 1985. Translated under the title Kontinental’naya kora, ee sostav i evolyutsiya, Moscow: Mir, 1988.

  50. Teraoka, Y., Detrital garnets from Paleozoic to Tertiary sandstones in Southwest Japan, Bull. Geol. Sur. of Japan, 2003, vol. 54, nos. 5/6, pp. 171–192.

    Article  Google Scholar 

  51. Tuchkova, M.I., Markevich, P.V., Krylov, K.A., et al., Cretaceous rocks of the Penzhina Bay: Mineralogy, petrography, and geodynamic sedimentation conditions, Lithol. Miner. Resour., 2003, no. 33, pp. 197–208.

  52. Verma, S.P. and Armstrong-Altrin, J.S., New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins, Chem. Geol., 2013, vol. 355, pp. 117–133.

    Article  Google Scholar 

  53. Yudovich, Ya.E., Regional’naya geokhimiya osadochnykh tolshch (Regional Geochemistry of Sedimentary Sequences), Leningrad: Nauka, 1981.

  54. Yudovich, Ya.E. and Ketris, M.P., Osnovy litokhimii (Fundamentals of Lithochemistry), St. Petersburg: Nauka, 2000.

  55. Zharov, A.E., Geologicheskoe stroenie i mel-paleogenovaya geodinamika Yugo-Vostochnogo Sakhalina (Geological Structure and Cretaceous–Paleogene Geodynamics in Southeastern Sakhalin), Yuzhno-Sakhalinsk: Sakhalin. Oblastn. Knizhn. Izd-vo, 2004.

  56. Zyabrev, S.V., Deep-water terrigenous sedimentation in West Sakhalin, Dokl. Akad. Nauk SSSR, 1987, vol. 292, no. 1, pp. 168–171.

    Google Scholar 

  57. Zyabrev, S.V., Deep-water sediments, paleogeography, and paleotectonics in the West Sakhalin trough, Extended Abstract of PhD (Geol.–Miner.) Dissertation, Khabarovsk: ITiG DVO RAN, 1992.

Download references


This work was supported by the Russian Foundation for Basic Research, project nos. 12-05-00119 and 15-05-00857.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. I. Malinovsky.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malinovsky, A.I. Material Composition, Provenances, and Geodynamic Settings of the Accumulation of Cretaceous Deposits in the West Sakhalin Terrane. Lithol Miner Resour 57, 199–217 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • West Sakhalin Terrane
  • Cretaceous
  • sandstones
  • material composition
  • provenances
  • geodynamic settings