Skip to main content

Sedimentary Rocks in the Basement of the Alpha–Mendeleev Rise, Arctic Ocean

Abstract

The results of petrographic, petrogeochemical and isotopic studies of sedimentary rocks obtained from bedrock outcrops of the Alpha–Mendeleev Rise, Arctic Ocean, using manipulators of a submarine research vessel (SRV) of the Russian Ministry of Defense during two expeditions conducted in 2014 and 2016 are considered and discussed in the article. Three sequences are identified in the basement of this Rise. The lower sequence (O3–S2) is composed of pure dolomite rocks (hereafter, dolomites proper), as well as dolomites with the terrigenous and bioclastic admixture, limestones with the terrigenous and bioclastic admixture, and quartz sandstones. They were formed in the coastal and shallow shelf environments of the tropical sea associated with carbonate platforms adjacent to river discharge areas. The middle sequence (D2–D3) is composed of limestones with the terrigenous and bioclastic admixture, as well as quartz–feldspar sandstones, which originated in coastal and shallow environments of the tropical sea. The upper sequence (K1) is represented by the calcareous, clayey, and calcareous–clayey sandstones formed in shallow marine conditions. Maturity degree of the clastic material, which makes up sandstones of the three sequences, decreases from almost monomictic quartz arenites and sublitharenites of the lower sequence to subarkoses of the middle sequence and subarkoses, arkoses, litharenites, and wackes of the upper sequence. All sediments were accumulated in interacratonic sedimentary basins developed successively at passive margins of the Mendeleev microcontinent along with supercontinents Laurussia and Laurasia.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Notes

  1. Hereinafter, dark unidentified mineral grains are defined as ore minerals. Based on the chemical composition of rocks, they can be represented by Fe and Fe–Ti oxides or Fe sulfides.

REFERENCES

  1. Arkticheskii bassein (geologiya i morfologiya) (The Arctic Basin: Geology and Morphology), Kaminskii, V.D., Ed., St. Petersburg: VNIIOkeangeologiya, 2017.

  2. Bhatia, M.R., Plate tectonics and geochemical composition of sandstones, J. Geol., 1983, vol. 91, no. 6, pp. 611–627.

    Article  Google Scholar 

  3. Brumley, K., Miller, E.L., Mayer, L.A., et al., Petrography and U–Pb geochronology of Caledonian age orthogneisses dredged from the Chukchi Borderland, Arctic Ocean, in Abstract AGU Fall Meeting, San Francisco, 2011, p. T51.

  4. Cocks, L.R.M. and Torsvik, T.H., The Palaeozoic geography of Laurentia and western Laurussia: A stable craton with mobile margins, Earth Sci. Rev., 2011, vol. 106, pp. 1–51.

    Article  Google Scholar 

  5. Dallmeyer, R.D., Strachan, R.A., and Henriksen, N., 40Ar/39Ar mineral age record in NE Greenland: implications for tectonic evolution of the North Atlantic Caledonides, J. Geol. Soc. London, 1994, vol. 15, pp. 615–628.

    Article  Google Scholar 

  6. Dumoulin, J.A., Harris, A.G., Gagiev, M., et al., Lithostratigraphic, conodont, and other faunal links between lower Paleozoic strata in northern and central Alaska and north-eastern Russia, Miller, E.L., Ed., in Tectonic Evolution of the Bering Shelf–Chukchi Sea–Arctic Margin and Adjacent Landmasses, GSA Spec. Pap., 2002, vol. 360, pp. 291–312.

    Google Scholar 

  7. Embry, A.F., Crockerland – the northwest source area for the Sverdrup Basin, Canadian Arctic Islands, in Arctic Geology and Petroleum Potential (NPF Spec. Publ. no. 2), Vorren, T.O., Ed., 1992, pp. 205–216,

    Google Scholar 

  8. Estrada, S. and Damaske, D., Henjes-Kunst, F., et al., Multistage Cretaceous magmatism in the northern coastal region of Ellesmere Island and its relation to the formation of Alpha Ridge – evidence from aeromagnetic, geochemical and geochronological data, Norw. J. Geol., 2016, vol. 96, no. 2, pp. 1–32.

    Article  Google Scholar 

  9. Faure G., Principles of Isotope Geology, Wiley, New York, 1986. Translated under the title Metody izotopnoi geologii, Moscow: Mir, 1989.

  10. Flügel, E., Microfacies of carbonate rocks analysis, interpretation and application, Berlin: Springer, 2004.

    Google Scholar 

  11. Galloway, J.M., Sweet, A.R., Swindles, G.T., et al., Middle Jurassic to Lower Cretaceous paleoclimate of Sverdrup Basin, Canadian Arctic Archipelago inferred from the palynostratigraphy, Mar. Petrol. Geol., 2013, vol. 44, pp. 240–255.

    Article  Google Scholar 

  12. Glebovsky, V.Yu., Kaminskii, V.D., Minakov, A.N., et al., Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field, Geotectonics, 2006, no. 4, pp. 263–281.

  13. Grantz, A., Hart, P.E., and Childers, V.A., Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean, in Arctic Petroleum Geology (Geol. Soc. Mem. London), Spencer, A.M., Ed., 2011 vol. 35, pp. 771–799.

  14. Gusev, E.A., Lukashenko, R.V., Popko, A.O., et al., New data on the structure of slopes of the Mendeleev Ridge Seamounts (Arctic Ocean), Dokl. Earth Sci., 2014, vol. 455, no. 2, pp. 250–253.

    Article  Google Scholar 

  15. Herron, M.M., Geochemical classification of terrigenous sands and shales from core or LOG data, J. Sediment. Petrol., 1988, vol. 58, no. 5, pp. 820–829.

    Google Scholar 

  16. Houseknecht, D.W., Petroleum systems framework of significant new oil discoveries in a giant Cretaceous (Aptian–Cenomanian) clinothem in Arctic Alaska, AAPG Bull., 2019, vol. 103, no. 3, pp. 619–652.

    Article  Google Scholar 

  17. Kaban’kov, V.Ya., Andreeva, I.A., Ivanov, V.N., et al., The geotectonic nature of the Central Arctic morphostructures and geological implications of bottom sediments for its interpretation, Geotectonics, 2004, no. 6, pp. 430–442.

  18. Kashubin, S.N., Pavlenkova, N.I., Petrov, O.V., et al., Types of the Earth’s crust in the Circum-Polar Arctic, Region. Geol. Metallogen., 2013, no. 55, pp. 5–20.

  19. Kos’ko, M.K., Cecile, M.P., Harrison, J.C., et al., Geology of Wrangel Island, between Chukchi and Siberian Seas, Northeastern Russia, Ottawa: Can. Geol. Surv., 1993.

    Book  Google Scholar 

  20. Kos’ko, M.K., Sobolev, N.N., Korago, E.A., et al., Geology of the New Siberian Islands: A basis for interpreting geophysical data on the East Arctic shelf of Russia, Neftegaz. Geol., 2013, vol. 8, no. 2, pp. 1–36.

    Google Scholar 

  21. Kossovaya, O.L., Tolmacheva, T.Yu., Petrov, O.V., et al., Palaeozoic carbonates and fossils of the Mendeleev Rise (Eastern Arctic): study of sea bottom dredged material, J. Geodyn., 2018, vol. 120, pp. 23–44.

    Article  Google Scholar 

  22. Lawver, L.A., Grantz, A., and Gahagan, L.M., Plate kinematic evolution of the present Arctic region since the Ordovician, Geol. Soc. Am., Spec. Pap., 2002, vol. 360, pp. 333–358.

    Google Scholar 

  23. McArthur, J.M., Howarth, R.J., and Shields, G.A., Strontium isotope stratigraphy, The Geologic Time Scale, Gradstein, F.M., Ed., Boston: Elsevier, 2012.

    Google Scholar 

  24. McLennan, S.M., Relationships between the trace element composition of sedimentary rocks and upper continental crust, Geochem. Geophys. Geosyst., 2001, vol. 2, no. 4, pp. 1–30.

    Article  Google Scholar 

  25. Metelkin, D.V., Vernikovsky, V.A., and Matushkin, N.Y., Arctida between Rodinia and Pangea, Precambrian Res., 2015, vol. 259, pp. 114–129.

    Article  Google Scholar 

  26. Miller, E.L. and Verzhbitsky, V.E., Structural studies near Pevek, Russia: implications for formation of the East Siberian Shelf and Makarov Basin of the Arctic Ocean, Stephan Mueller Spec. Publ. Ser., 2009, vol. 4, pp. 223–241.

    Article  Google Scholar 

  27. Morozov, A.F., Petrov, O.V., Shokal’skii, S.P., et al., New geological data substantiating the continental nature of the Central Arctic Uplift region, Region. Geol. Metallogen., 2013, no. 53, pp. 34–55.

  28. Nikishin, A.M., Malyshev, N.A., and Petrov, E.I., Geological Structure and History of the Arctic Ocean, Moscow: CJSC GEOSurv. GIN, EAGE Publ., 2014.

  29. Pettijohn, F.J., Sand and Sandstone, New York: Harper and Row, 1973.

    Book  Google Scholar 

  30. Pourmand, A., Dauphas, N., and Ireland, T.J., A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances, Chem. Geol., 2012, vol. 291, pp. 38–54.

    Article  Google Scholar 

  31. Rekant, P.V., Kaban’kov, V.Ya., Andreeva, I.A., et al., Geological sampling of bedrocks on the Lomonosov Ridge: A key to understanding the geologic nature and tectonic evolution, Region. Geol., 2018, no. 75, pp. 29–45.

  32. Roser, B.P. and Korsch, R.J., Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data, Chem. Geol., 1988, vol. 67, nos 1-2, pp. 119–139.

    Article  Google Scholar 

  33. Rudnick, R.L. and Gao, S., Composition of the continental crust, The Crust, 2003, vol. 3, pp. 1–64.

    Google Scholar 

  34. Saltzman, M.R., Edwards, C.T., Leslie, S.A., et al., Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution, Geol. Soc. Am. Bull., 2014, vol. 126, pp. 1551–1568.

    Article  Google Scholar 

  35. Scotese, Ch.R., Paleogeographic reconstructions of the Circum-Arctic Region since the Late Jurassic, in Paleogeographic and Paleoclimatic Atlas. Paleomap Project, Arlington, 2011, Search and Discovery Article #30192.

  36. Sibley, D.F. and Gregg, J.M., Classification of dolomite rock textures, J. Sediment. Res., 1987, vol. 57, no. 6, pp. 967–975.

    Google Scholar 

  37. Simanovich, I.M., Kvarts peschanykh porod (Quartz in Sandy Rocks), Moscow: Nauka, 1978.

  38. Skolotnev, S.G., Fedonkin, M.A., and Korniichuk, A.V., New data on the geological structure of the southwestern Mendeleev Rise, Arctic Ocean, Dokl. Earth Sci., 2017a, vol. 476, no. 1, pp. 1001–1006.

    Article  Google Scholar 

  39. Skolotnev, S.G., Fedonkin, M.A., Tolmacheva, T.Yu., et al., Geological section of the Al’fa-Mendeleev Rise basement in the Arctic based on deep-water studies, in Materialy XXII Mezhdunarodnoi nauchnoi konferentsii po morskoi geologii (Materials of XXII Int. Sci. Conf. on Marine Geology), Moscow: IO RAN, 2017.

  40. Skolotnev, S., Aleksandrova, G., Isakova, T., et al., Fossils from seabed bedrocks: implications for the nature of the acoustic basement of the Mendeleev Rise (Arctic Ocean), Mar. Geol., 2019, vol. 407, pp. 148–163.

    Article  Google Scholar 

  41. Sobolev, N.N., Metelkin, D.V., Vernikovskii, V.A., et al., The first data on the geology of Jeannette Island (De Long Archipelago, New Siberian Islands), Dokl. Earth Sci., 2014, vol. 459, no. 2, pp. 1504–1509.

    Article  Google Scholar 

  42. Sokolov, S.D., Tuchkova, M.I., Ganelin, A.V., et al., Tectonics of the South Anyui suture, northeastern Asia, Geotectonics, 2015, no. 1, pp. 3–26.

  43. Trettin, H.P., Mayr, U., Long, G.D.F., et al., Cambrian to Early Devonian basin development, sedimentation, and volcanism, Arctic Islands, in Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland, Trettin, H.P., Ed., Geol. Surv. Canada, 1991, pp. 163–238.

    Book  Google Scholar 

  44. Tuchkova, M.I., Shokal’skii, S.P., Sokolov, S.D., et al., Triassic sandstones in the Mendeleev Rise, Chukotka and Wrangel Islands – deposits of a single sedimentary basin in the Early Mesozoic, in Problemy tektoniki kontinentov i okeanov (Problems in the Tectonics of Continents and Oceans), Moscow: GEOS, 2019, vol. 2, pp. 316–318.

  45. Tullius, D.N., Leier, A.L., Galloway, J.M., et al., Sedimentology and stratigraphy of the Lower Cretaceous Isachsen Formation: Ellef Ringnes Island, Sverdrup Basin, Canadian Arctic Archipelago, Mar. Petrol. Geol., 2014, vol. 57, pp. 135–151.

    Article  Google Scholar 

  46. Veizer, J., Ala, D., Azmy, K., et al., 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 1999, vol. 161, pp. 59–88.

    Article  Google Scholar 

  47. Vernikovsky, V.A., Dobretsov, N.L., Metelkin, D.V., et al., Problems in the tectonics and tectonic evolution of the Arctic, Geol. Geofiz., 2013, vol. 54, no. 8, pp. 1083–1107.

    Google Scholar 

  48. Zhang, W. and Guan, P., Jian X. et al., In situ geochemistry of Lower Paleozoic dolomites in the northwestern Tarim Basin: Implications for the nature, origin, and evolution of diagenetic fluids, Geochem. Geophys. Geosyst., 2014, vol. 15, no. 7, pp. 2744–2764.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the SRV team of the Russian Ministry of Defence for the mastery and preseverance during the recovery of rock samples, as well as to researchers at the Geological Institute M.I. Bujakaite and O.L. Petrov for the isotopic measurements.

Funding

This work was carried out under the State Task of Geological Institute, Russian Academy of Sciences (project no. 0135–2019–00500), with the financial support of AO GEOSURVEY Geological Institute RAS, and the Russian Foundation for Basic Research (project no. 18-05-70 061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Skolotnev.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skolotnev, S.G., Freiman, S.I., Khisamutdinova, A.I. et al. Sedimentary Rocks in the Basement of the Alpha–Mendeleev Rise, Arctic Ocean. Lithol Miner Resour 57, 121–142 (2022). https://doi.org/10.1134/S0024490222020079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490222020079

Keywords:

  • dolomites
  • limestones
  • sandstones
  • sedimentation
  • Paleozoic
  • Early Cretaceous
  • Alpha–Mendeleev Rise
  • Arctic Ocean