Skip to main content

Peculiarities of Clay Mineral Formation in Sediments from the Hydrothermal System Center, Hole 858B, Juan de Fuca Ridge

Abstract

Clay minerals in Holocene–Pleistocene sediments from Hole 858B DSDP drilled at 20 m from the black smoker in the Dead Dog hydrothermal field, axial valley of the Juan de Fuca Ridge, were scrutinized for the first time by modeling the X-ray diffraction patterns in combination with the splitting of 060 reflection profiles into individual maximums. In the section of the sedimentary cover drilled to a depth of 38.6 mbsf, we can distinguish three sediment groups, with successive transformation of clay minerals reflecting a high temperature gradient. Terrigenous clay minerals (dioctahedral illite, mixed-layer smectite-illite, and trioctahedral chlorite) are preserved in the 1.97–7.2 mbsf interval. Terrigenous illite and chlorite were preserved and trioctahedral mixed-layer chlorite-smectite and corrensite were formed in the 7.2–16.7 mbsf interval. At 16.7–38 mbsf, all terrigenous clay minerals were transformed into a new assemblage of trioctahedral phases: corrensite minerals, mixed-layer talc-smectite, and chlorite. Chlorite alone was found at 38.4 mbsf. Structural transitions of clay minerals imply their formation at each stage by the dissolution and synthesis. Metalliferous sediments in the 0–1.97 mbsf interval comprise a mixture of partially altered terrigenous clay minerals and the indicator Fe-rich dioctahedral mixed-layer mica-smectite, which was formed from a hydrothermal fluid mixed with seawater. The composition of clay minerals in the 11.65–12.60 mbsf interval was transformed by high temperature of the hydrothermal fluid penetrating from the discharge channel of the hydrothermal convective system into the tectonic horizontal fracture of the sedimentary cover in the 10.41–11.65 mbsf interval.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 6.

REFERENCES

  1. Beaufort, D., Baronnet, A., Lanson, B., and Meunier, A., Corrensite: a single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France), Am. Mineral., 1997, vol. 82, pp. 109–124.

    Article  Google Scholar 

  2. Brown, B.E. and Bailey, S.W., Chlorite polytypism: 1. Regular and semi-random 1layer structures, Am. Mineral., 1962, vol. 47, pp. 819–850.

    Google Scholar 

  3. Buatier, M.D., Karpoff, A.M., Boni, M., et al., Mineralogical and petrographic records of sediment-fluid interaction in the sedimentary sequence at Middle Valley, Juan de Fuca Ridge, Leg 139, Eds., in Proc. ODP, Sci. Res. 139, Mottl, M.J., Davis, E.E. Fisher, A.T., and Slack, J.F., Eds. College Station: TX (Ocean Drill. Progr.), 1994, pp. 133–154.

  4. Buatier, M.D., Frü-Green, G.L., and Karpoff, A.-M., Mechanisms of Mg-phyllosilicate formation in a hydrothermal system at a sedimented ridge (Middle Valley, Juan de Fuca), Contrib. Mineral. Petrol., 1995, vol. 122, pp. 134–151.

    Article  Google Scholar 

  5. Butuzova, G.Yu., Drits, V.A., Lisitsyna, N.A., Tsipurskii, S.I., and Dmitrik, A.L., Dynamics of the formation of clay minerals in ore-bearing sediments in the Atlantis-II Basin (Red Sea), Litol. Polezn. Iskop., 1979, no. 1, pp. 30–42.

  6. Butuzova, G.Yu., Drits, V.A., Lisitsyna, N.A., and Tsipurskii, S.I., New data on the authigenic layered silicates and metalliferous sediments in the Atlantis-II Basin (Red Sea), Litol. Polezn. Iskop., 1983, no. 5, pp. 82–88.

  7. Chang, H.K., Mackenzie, F.T., and Schoonmaker, J., Comparison between the diagenesis of dioctahedral and trioctahedral smectite, Brasilian offshore basins, Clay Clay Miner, 1986, vol. 34, pp. 407–423.

    Article  Google Scholar 

  8. Davis, E.E. and Villinger, H., Tectonic and thermal structure of the Middle Valley sedimented rift, northern Juan de Fuca Ridge, in ODP Init. Rep. 139, College Station: TX (Ocean Drill. Progr., 1992, pp. 9–41.

    Google Scholar 

  9. Davis, E.E., Mottl, M.J., Fisher, A.T., et al., ODP Init. Rep. 139, College Station: TX (Ocean Drill. Progr.), 1992.

    Google Scholar 

  10. Drits, V.A. and Sakharov, B.A., Rentgenostrukturnyi analiz smeshanosloinykh mineralov (X-ray Structural Analysis of the Mixed-Layer Minerals), Moscow: Nauka, 1976.

  11. Drits, V.A. and Tchoubar, C., X-ray Diffraction by Disordered Lamellar Structures, Heldenberg: Springer, 1990.

  12. Drits, V.A., Sakharov, B.A., Lindgreen, H., and Salyn, A., Sequential structural transformation of illite-smectite-vermiculite during diagenesis of Upper Jurassic shales from North Sea and Denmark, Clay Miner., 1997, vol. 32, pp. 351–371.

    Article  Google Scholar 

  13. Drits, V.A., Lindgreen, H., Sakharov, B.A., et al., Tobelitization of smectite during oil generation in oil source shales. Application to North Sea illite-tobelite-smectite-vermiculite, Clay Clay Miner., 2002a, vol. 50, pp. 82–98.

    Article  Google Scholar 

  14. Drits, V.A., Sakharov, B.A., Dainyak, L.G., et al., Structural and chemical heterogeneity of illite-smectites from Upper Jurassic mudstones of East Greenland related to volcanic and weathered parent rocks, Am. Mineral., 2002b, vol. 87, pp. 1590–1607.

    Article  Google Scholar 

  15. Drits, V.A., Lindgreen, H., Sakharov, B.A., et al., The detailed structure and origin of clay minerals at the Cretaceous/Tertiary boundary, Stevns Klint (Denmark), Clay Miner., 2004, pp. 367–390.

  16. Drits, V.A., Sakharov, B.A., Salyn, A.L., and Lindgreen, H., Determination of the content and distribution of fixed ammonium in illite-smectite using a modified X-ray diffraction technique: application to oil source rocks of western Greenland, Am. Mineral., 2005, vol. 90, pp. 71–84.

    Article  Google Scholar 

  17. Drits, V.A., Ivanovskaya, T.A., Sakharov, B.A., Zvyagina, B.B., Gor’kova, N.V., Pokrovskaya, E.V., and Savichev, A.T., Mixed-layer corrensite–chlorites and their formation mechanism in the glauconitic sandstone–clayey rocks (Riphean, Anabar Uplift), Lithol. Miner. Resour., 2011, no. 6, pp. 566–593.

  18. Ferrage, E., Lanson, B., Sakharov, B.A., et al., Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: influence of layer charge and charge location, Am. Mineral., 2007, pp. 1731–1743.

  19. Frü-Green, G.L., McKenzie, J.A., Boni, M., et al., Stable isotope and geochemical record of convective hydrothermal circulation in the sedimentary sequence of Middle Valley, Juan de Fuca Ridge, Leg 139, in Proc. ODP, Sci. Res. 139, Mottl, M.J., Davis, E.E. Fisher, A.T., Slack, J.F., Eds., College Station: TX (Ocean Drill. Progr.), 1994, pp. 291–306.

  20. Honnorez, J., Karpoff, A.-M., and Trauth-Badaut, D., Sedimentology, mineralogy, and geochemistry of green clay samples from the Galapagos hydrothermal mounds, Holes 506, 506c, and 507d, in Deep Sea Drill. Proj. Leg 70 (Prelimin. Data), Washington, DC: U.S. Govt. Print. Off., 1983, pp. 211–224.

    Google Scholar 

  21. Inoue, A., Conversion of smectite to chlorite by hydrothermal diagenetic alterations, Hokuroku Kuroko mineralization area, Northeast Japan, in Proc. Int. Clay Conf. Clay Miner. Soc., 1987, vol. 8, pp. 158–164.

  22. Inoue, A. and Utada, M., Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan, Am. Mineral., 1991, vol. 76, pp. 628–640.

    Google Scholar 

  23. Kristmanndottir, H., Types of clay minerals in hydrothermally altered basaltic rocks, Reykjanes, Iceland, Jokull, 1976, no. 26, pp. 30–39.

  24. Kristmanndottir, H. and Tomasson, J., Zeolite zones in geothermal areas in Iceland, in Natural Zeolites, Occurrences, Properties, Use, Sand, L.B. and Mumpton, F.A., Eds., Oxford: Pergamon Press, 1978, pp. 199–220.

    Google Scholar 

  25. Kristmannsdottir, H., Clay minerals formed by hydrothermal alteration of basaltic rocks in Iceland geothermal fields, Geol. Fören Stockholm, 1975, vol. 97, pp. 289–292.

    Article  Google Scholar 

  26. Kurnosov, V.B., Chudaev, O.V., and Shevchenko, A.Y., Mineralogy and geochemistry of sediments from Galapagos hydrothermal mounds, Leg 70, in Deep Sea Drill. Proj. Init. Repts. 70, Washington, DC: U.S. Govt. Print. Off., 1983, pp. 225–233.

    Google Scholar 

  27. Kurnosov, V.B., Sakharov, B.A., and Blinova, E.V., Clay minerals in sediments of the hydrothermally active Southern Trough in the Guaymas Basin (Gulf of California), Lithol. Miner. Resour., 2016, no. 4, pp. 287–306.

  28. Kurnosov, V.B., Sakharov, B.A., Geptner, A.R., Konovalov, Yu.I., and Goncharova, E.O., Clay minerals in sediments from contact zones with basalt sills, Lithol. Miner. Resour., 2019a, no. 3, pp. 221–235.

  29. Kurnosov, V.B., Sakharov, B.A., Geptner, A.R., Konovalov, Yu.I., and Goncharova, E.O., Clay minerals in sediments from the central part of the Guaymas Basin, the Gulf of California, Hole 478, Russ. J. Pacif. Geol., 2019b, vol. 38, no. 5, pp. 479–491.

    Article  Google Scholar 

  30. Kurnosov, V.B., Sakharov, B.A., Geptner, A.R., Konovalov, Yu.I., and Goncharov, E.O., Clay minerals in basalt sills from the sediment cover, East Pacific Rise, Lithol. Miner. Resour., 2020, no. 2, pp. 152–165.

  31. Lanson, B., Sakharov, B.A., Claret, F., and Drits, V.A., Diagenetic smectite-to-illite transition in clay-rich sediments: a reappraisal of X-ray diffraction results using the multi-specimen method, Am. J. Sci., 2009, vol. 309, pp. 476–516.

  32. Lindgreen, H., Drits, V.A., Sakharov, B.A., et al., The structure and diagenetic transformation of illite-smectite and chlorite-smectite from North Sea Cretaceous–Tertiary chalk, Clay Miner., 2002, vol. 37, pp. 429–450.

    Article  Google Scholar 

  33. Lindgreen, H., Drits, V.A., Jakobsen, F.C., and Sakharov, B.A., Clay mineralogy of the central North Sea Upper Cretaceous–Tertiary chalk and formation of clay-rich layers, Clay Clay Miner., 2008, vol. 56, pp. 693–710.

    Article  Google Scholar 

  34. Luchsheva, L.N., Kurnosov, V.B., and Konovalov, Yu.I., Mercury thermoforms and their distribution in the sedimentary sequence of the Juan De Fuca Ridge, Geochem. Int., 2020, vol. 65, no. 8, pp. 922–932.

    Article  Google Scholar 

  35. McCarty, D.K., Sakharov, B.A., and Drits, V.A., New insights into smectite illitization: a zoned K-bentonite revisited, Am. Mineral., 2009, vol. 94, pp. 1653–1671.

    Article  Google Scholar 

  36. Peter, J.M., Goodfellow, W.D., and Leybourne, M.I., Fluid inclusion petrography and microthermometry of the Middle Valley hydrothermal system, northern Juan de Fuca Ridge, Leg 139, in Proc. ODP, Sci. Res. 139, Mottl, M.J., Davis, E.E. Fisher, A.T., and Slack, J.F., Eds., College Station: TX (Ocean Drill. Progr.), 1994, pp. 411–425.

  37. Reynolds, R.C., Mixed-layer chlorite minerals, in Hydrous Phyllosilicates (Exclusive of Micas), Bailey, S.W., Ed., Washington, DC: Mineral. Soc. Am., 1988, vol. 19 (Rev. Mineral.), pp. 601–609.

  38. Sakharov, B.A. and Drits, V.A., Technique for determination of the content of smectite layers in the dispersed dioctahedral K-bearing micaceous minerals, Lithol. Miner. Resour., 2015, no. 1, pp. 50–79.

  39. Sakharov, B.A. and Drits, V.A., Determination of minor contents of smectite layers in the dispersed dioctahedral K-bearing micaceous minerals of the illite, aluminoceladonite, and glauconite composition, Lithol. Miner. Resour., 2018, no. 2, pp. 91–109.

  40. Sakharov, B.A. and Lanson, B., X-ray identification of mixed-layer structures, in Modeling of Diffraction Effects. Chapter 2.3. Handbook of Clay Science, Bergaya, F. and Lagaly, G., Eds., Amsterdam: Elsevier, 2013, part B (Techniques and Applications), pp. 51–135.

  41. Sakharov, B.A., Lindgreen, H., Salyn, A.L., and Drits, V.A., Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting, Clay Clay Miner., 1999, vol. 47, pp. 555–566.

    Article  Google Scholar 

  42. Segonzac, D.G., Les mineraux argileux dans la diagenese-passage au metamorphisme, Mem. Serv. Carte Geol. Als Lorr, 1969, vol. 29, pp. 1–320.

    Google Scholar 

  43. Varentsov, I.M., Sakharov, B.A., Drits, V.A., et al., Hydrothermal deposits of the Galapagos Rift Zone, Leg 70: mineralogy and geochemistry of major components, in Deep Sea Drill. Proj. Init. Repts. 70, Washington, DC: U.S. Govt. Print. Off., 1983, pp. 235–268.

    Google Scholar 

  44. Wojdyr, M., Fityk: a general-purpose peak fitting program, J. Appl. Crystallogr., 2010, vol. 43, pp. 1126–1128.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to T.D. Zelenova for extracting <0.001-mm fraction from sediments and preparing specimens for the XRD analysis and to E.V. Pokrovskaya for the X-ray diffraction runs of the samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. A. Sakharov or V. B. Kurnosov.

Ethics declarations

We used rock samples from the ODP Core Repository (Texas A&M University, College Station).

This work was accomplished under State Task of Research Works of the Geological Institute, project nos. 0135-2019-0053 and 0135-2019-0068.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sakharov, B.A., Kurnosov, V.B. Peculiarities of Clay Mineral Formation in Sediments from the Hydrothermal System Center, Hole 858B, Juan de Fuca Ridge. Lithol Miner Resour 57, 161–180 (2022). https://doi.org/10.1134/S0024490222020067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490222020067

Keywords:

  • clay minerals
  • hydrothermal field
  • Juan de Fuca Ridge
  • deep-seawater holes