Skip to main content

Distinctive Features of Two Genetic Types of Sulfide Ores in the Central Atlantic


The results of long-term studies of the localization conditions, morphology, structure, mineral and chemical compositions of modern ocean sulfide ores, carbonate sediments, as well as ore- and metal-bearing sediments, at 13°–20° N Mid-Atlantic Ridge are summarized. This paper considers the features of sulfide ores formed in various geological and physicochemical environments: (1) on the bottom surface during the hydrothermal solution–seawater (“black smokers”) interaction; (2) under the bottom surface during the hydrothermal solution–biogenic carbonate sediment (hydrothermal-metasomatic ore) interaction. These ore types have some common features, and they are not always distinguished by researchers. A set of distinctive features is proposed to identify the hydrothermal-metasomatic ores that can be used in the search and prediction of sulfide ores in the ocean.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. Classification of sediments is based on the [Fe + Mn]ncr and [Cu + Zn]ncr, contents recalculated to the noncarbonate (ncr) material: MAR carbonate (background) sediments [Fe + Mn]ncr < 10%; metal-bearing sediments 10% ≤ [Fe + Mn]ncr < 30%, [Cu + Zn]ncr < 0.10%; ore-bearing sediments 10% ≤ [Fe + Mn]ncr < 30%, [Cu + Zn]ncr ≥ 0.25%; and ore-grade sediments [Fe + Mn]ncr ≥ 30%, [Cu + Zn]ncr ≥ 0.25%.


  1. Andreev, S.I., Anikeeva, L.I., and Alekseev, A.M., Mineral’nye resursy mirovogo okeana: kontseptsiya izucheniya i osvoeniya (na period do 2020 g.) (Mineral Resources in the World Ocean: Concept of Study and Development up to Year 2020), St. Petersburg: VNIIOkeangeologiya, 2007.

  2. Avdonin, V.V., Goleva, R.V., Dubenchuk, V.T., et al., Sul’fidy Vostochno-Tikhookeanskogo podnyatiya (Sulfides in the East Pacific Rise), Moscow: VIMS, 1993.

  3. Barriga, F.F.A., Costa, I.M.A., Relvas, J.M.R., et al., The Rainbow serpentinites and serpentinite – sulfide stockwork (Mid-Atlantic Ridge, AMAR segment): a preliminary report of the FLORES results, EOS. Amer. Geophys. Res., 1997, vol. 78, no. 46, p. F832.

    Google Scholar 

  4. Baturin, G.N., Deep-Water Hydrothermal Ore Sediments, in Istoriya Mirovogo okeana (History of the World Ocean), Moscow: Nauka, 1971, pp. 259–277.

    Google Scholar 

  5. Bel’tenev, V.E., Rozhdestvenskaya, I.I., Samsonov, I.K., et al., Prospecting in the Russian Exploration Area in the Atlantic Ocean: Estimates of possible resources according to Russian categories P2 and P3 in blocks 31‒45, Report on Cruise 37 of R/V Professor Logatchev. Lomonosov: AO PMGRE, 2016.

  6. Blinova, E.V. and Kurnosov, V.B., Hydrothermal alterations of sediments in the Southern Trough of the Guaymas Basin (Gulf of California) and transformation of the composition of solutions, Lithol. Miner. Resour., 2015, no. 6, pp. 433–451.

  7. Bogdanov, Yu.A., Gidrotermal’nye proyavleniya riftov Sredinno-Atlanticheskogo khrebta (Hydrothermal Manifestations in Rifts of the Mid-Atlantic Ridge), Moscow: Nauch. Mir, 1997.

  8. Bogdanov, Yu.A., Gurvich, E.G., Butuzova, G.Yu., et al., Metallonosnye osadki Krasnogo morya (Metal-bearing Sediments in the Red Sea), Moscow: Nauka, 1986.

  9. Bogdanov, Yu.A., Khvorova, I.V., Serova, V.V., et al., Sedimentation in the Juan de Fuca Ridge zone, Izv. AN SSSR. Ser. Geol, 1989, no. 5, pp. 26–35.

  10. Bogdanov, Yu.A., Bortnikov, N.S., Vikentyev, I.V., Gurvich, E.G., and Sagalevich, A.M., A new type of modern mineral-forming system: Black smokers of the hydrothermal field at 14°45′ N latitude, Mid-Atlantic Ridge, Geol. Ore Depos., 1997, vol. 39, no. 1, pp. 58–78G.

    Google Scholar 

  11. Bogdanov, Yu.A., Bortnikov, N.S., Vikentyev, I.V., et al., Mineralogical–geochemical peculiarities of hydrothermal sulfide ores and fluids in the Rainbow field associated with serpentinites, Mid-Atlantic Ridge (36°14′ N), Geol. Ore Depos., 2002, vol. 44, no. 6, pp. 444–473.

    Google Scholar 

  12. Bogdanov, Yu.A., Lein, A.Yu., Bortnikov, N.S., and Sagalevich, A.M., Hydrothermal ore manifestations on the seafloor confined to serpentinite massifs, Izv. Sektsii Nauk Zemle RAEN, 2004, no. 12, pp. 63–90.

  13. Bogdanov, Yu.A., Lisitsyn, A.P., Sagalevich, E.G., et al., Gidrotermal’nyi rudogenez okeanskogo dna (Hydrothermal Ore Genesis on the Seafloor), Moscow: Nauka, 2006.

  14. Bogdanov, Yu.A., Lein, A.Yu., Bogdanova, O.Yu., and Ul’yanova, N.V., Diffuse flows of high-temperature fluids and their role in the formation of hydrothermal deposits, Oceanology, 2012, vol. 52, no. 5, pp. 655–665.

    Google Scholar 

  15. Bonatti, E., The origin of metal deposits in the oceanic lithosphere, Sci. Am., 1978, vol. 238, no. 2, pp. 54–61.

    Google Scholar 

  16. Borodaev, Yu.S., Mozgova, N.N., Gablina, I.F., et al., Zoned chimneys of black smokers in the Rainbow hydrothermal field (MAR, 36°14′ N), Vestn. MGU, Ser. Geol., no. 3, pp. 35–48.

  17. Bortnikov, N.S. and Vikentyev, I.V., Modern base metal sulfide mineral formation in the World Ocean, Geol.Ore Depos., 2005, vol. 47, no. 1, pp. 13–44.

    Google Scholar 

  18. Butuzova, G.Yu., Gidrotermal’no-osadochnoe rudoobrazovanie v riftovoi zone Krasnogo morya, (Hydrothermal-Sedimentary Ore Formation in the Red Sea Rift Zone), Moscow: GEOS, 1998.

  19. Butuzova, G.Yu., Gidrotermal’no-osadochnoe rudoobrazovanie v Mirovom okeane (Hydrothermal-Sedimentary Ore Formation), Moscow: GEOS, 2003.

  20. Cherkashov, G.A., Morphology and internal structure of hydrothermal orebodies formed in various geological settings of the World Ocean, Oceanology, 2021, vol. 61, no. 2, pp. 262–271.

    Google Scholar 

  21. Curray, J.R., Moore, D.C., Aguayo, J.E., et al., Deep Sea Drill. Proj., Init. Rep., Wash. (D.C.): U.S. Gov. Print. Off., 1982, vol. 64.

  22. Demina, L.L. and Galkin, S.V., On the role of abiogenic factors in the bioaccumulation of heavy metals by the hydrothermal fauna of the Mid-Atlantic Ridge, Oceanology, 2008, vol. 48, no. 6, pp. 784–797.

    Google Scholar 

  23. Djurle, C., An X-ray study of the system Cu–S, Acta Chem. Scan., 1958, vol. 12, no. 7, pp. 1415–1426.

    Google Scholar 

  24. Duckworth, R.C., Knott, R., Fallick, A.E., et al., Mineralogy and sulfur isotope geochemistry of the Broken Spur sulfides, 29° N Mid-Atlantic Ridge in Hydrothermal Vents and Processes, Parson, L.M., Walker, C.L., and Dixon, R.D., Eds., London: Geol. Society Spec. Publ., 1995, no. 87, pp. 175–189.

  25. Flamini, A., Graziani, G., and Grubessi, O., A new synthetic phase in the Cu–S system, Period. Miner., 1973, vol. 42, pp. 257–260.

    Google Scholar 

  26. Fouquet, Y., Wafik, A., Cambon, P., et al., Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposits (Mid-Atlantic Ridge at 23° N), Econ. Geol., 1993, vol. 88, pp. 2018–2036.

    Google Scholar 

  27. Fouquet, Y., Cambon, P., Etoubleau, J., et al., Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit, Geoph. Monogr. Ser., 2010, vol. 188, pp. 321–367.

    Google Scholar 

  28. Gablina, I.F., Mozgova, N.N, Borodaev, Yu.S., et al., Copper sulfide associations in recent oceanic ores of the Logachev hydrothermal field (Mid-Atlantic Ridge, 14°45′ N, Geol. Ore Depos., 2000, vol. 42, no. 4, pp. 296–316.

    Google Scholar 

  29. Gablina, I.F., Mozgova, N.N., Borodaev, Yu.S., et al., Tetragonal form of Cu2S in modern hydrothermal ores in the Rainbow field (MAR 36°14′ N), Nov. Dann. Miner., 2004, no. 39, pp. 102–109.

  30. Gablina, I.F., Demina, L.L., Dmitrenko, O.B., et al., Composition and secondary alterations of microfossils in sediments of the Ashadze-1 hydrothermal field (tropical Mid-Atlantic Ridge), Oceanology, 2011, vol. 51, no. 3, pp. 476–490.

    Google Scholar 

  31. Gablina, I.F., Dobretsova, I.G., Pokrovskii, B.G., and Rusakov, V.Yu., Model of the metasomatic formation of modern metal- and ore-bearing sediments and sulfide ores in the MAR region, in Materialy Vserossiiskogo Litologicheskogo soveshchaniya, posvyashchennogo 100-letiyu osnovatelya Leningradskoi litologicheskoi shkoly (Materials of All-Russia Lithological Conference Devoted to 100 Years of the Rukhin Leningrad Lithological School, St. Petersburg, 2012, vol. 2, pp. 9–12.

  32. Gablina, I.F., Popova, E.A., Sadchikova, T.A., et al., Hydrothermal metasomatic alteration of carbonate bottom sediments in the Ashadze-1 field (13° N Mid-Atlantic Ridge), Geol. Ore Depos., 2014, vol. 56, no. 5, pp. 357–379.

    Google Scholar 

  33. Gablina, I.F., Dmitrenko, O.B., Os’kina, N.S., et al., Impact of hydrothermal activity on carbonate fossils in bottom sediments of the tropical Atlantic, Oceanology, 2015, vol. 55, no. 1, pp. 100–1115.

    Google Scholar 

  34. Gablina, I.F., Dobretsova, I.G., and Popova, E.A., Biomineralization processes during the formation of modern oceanic sulfide ore and ore-bearing sediments in Biogenic-Abiogenic Interactions in Natural and Anthropogenic Systems (Part of the Series Lecture Notes in Earth System Sciences), Frank-Kamenetskaya, O.V., Panova, E.G., and Vlasov, Yu, D., Eds., Springer, 2016, pp. 43–54.

    Google Scholar 

  35. Gablina, I.F., Dobretsova, I.G., Narkevskii, E.V., et al., Influence of hydrothermal-metasomatic processes on the formation of present-day sulfide ores in carbonate bottom sediments of the Mid-Atlantic Ridge (19°–20° N), Lithol. Miner. Resour., 2017, no. 5, pp. 431–454.

  36. Gablina, I.F., Dobretsova, I.G., Laiba, A.A., et al., Specific features of sulfide ores in the Pobeda hydrothermal cluster, Mid-Atlantic Rise 17°07′–17°08′ N, Lithol. Miner. Resour., 2018, no. 6, pp. 431–454.

  37. Gablina, I.F., Dmitrenko, O.B., Khusid, T.A., and Libina, N.V., Influence of fluids on the species composition and preservation of microfossils in biogenic carbonate sediments in the Pobeda hydrothermal cluster (Mid-Atlantic Ridge), Lithol. Miner. Resour., 2019, no. 6, pp. 511–523.

  38. Galkin, S.V., Gidrotermal’nye soobshchestva mirovogo okeana. Struktura, tipologiya, geografiya (Hydrothermal Communities in the Ocean: Structure, Typology, and Geography), Moscow: GEOS, 2002.

  39. Galkin, S.V., Spatial structure of hydrothermal communities in the Mid-Atlantic Ridge, in Ekosistemy atlanticheskikh gidroterm (Ecosystems in Atlantic Hydrotherms), Moscow: Nauka, 2006, pp. 163–202.

  40. Geologicheskoe stroenie i gidrotermal’nye obrazovaniya khrebta Khuan de Fuka (Geological Structure and Hydrothermal Formations in the Juan de Fuca Ridge), Lisitsyn, A.P., Ed., Moscow: Nauka, 1990.

    Google Scholar 

  41. Gidrotermal’nye sistemy i osadochnye formatsii sredinno-okeanicheskikh khrebtov Atlantiki (Hydrothermal Systems and Sedimentary Formations in Mid-Oceanic Ridges of the Atlantic), Lisitsyn, A.P., Ed., Moscow: Nauka, 1993.

    Google Scholar 

  42. Goble, R.J., The relationship between crystal structure, bonding and cell dimensions in the copper sulfides, Can. Mineral., 1985, vol. 23, pp. 6l–76.

    Google Scholar 

  43. Goble, R.Y. and Robinson, G., Geerite, Cu1.6S, a new copper sulphide, Dekalb Township, New York, Can. Miner., 1980, vol. 18, pp. 519–523.

    Google Scholar 

  44. Goodfellow, W.D. and Franklin, J.M., Geology, mineralogy, and chemistry of sediment-hosted clastic massive sulfides in shallow cores, Middle Valley, northern Juan de Fuca Ridge, Econ. Geol., 1993, vol. 88, pp. 2037–2068.

    Google Scholar 

  45. Hannington, M.D., Galley, A.G., Herzig, P.M., and Petersen, S., Comparison of the TAG mound stockwork complex with Cyprus-type massive sulfide deposits, Proc. Ocean Drill. Progr., Sci. Res., 1998, vol. 158, pp. 389–415.

    Google Scholar 

  46. Humphris, S.E., Herzig, P.M., Miller, D.J., et al., The internal structure of an active sea-floor massive sulphide deposit, Nature, 1995, vol. 377, pp. 713–716.

    Google Scholar 

  47. Jones, M.L., On the Vestimentifera, new phylum, six new species, and other taxa, from hydrothermal vents and elsewhere?, Bull. Biol. Soc. Wash., 1985, no. 5, pp. 117–158.

  48. Khusid, T.A., Os’kina, N.S., Lukashina, N.P., et al., Benthic and plankton foraminifers in hydrothermally active zones of the Mid-Atlantic Ridge (MAR), Stratigr. Geol. Correl., 2018, vol. 26, no. 1, pp. 109–115.

    Google Scholar 

  49. Kurnosov, V.B. and Blinova, E.V., Hydrothermal alteration of sediments and compositional evolution of solutions in the Guaymas Basin of the Gulf of California, Dokl. Earth Sci., 2015, vol. 461, no. 2, pp. 217–220.

    Google Scholar 

  50. Kurnosov, V., Murdmaa, I., Rosanova, T., et al., Mineralogy and hydrothermally altered sediments and igneous rocks at sites 856–858, Middle Valley, Juan de Fuca Ridge, Leg 139, Proc. Ocean Drill. Progr., Sci. Rep., 1994, vol. 139, pp. 113–131.

    Google Scholar 

  51. Kurnosov, V.B., Sakharov, B.A., and Blinova, E.V., Clay minerals in sediments of the hydrothermally active Southern Trough in the Guaymas Basin (Gulf of California), Lithol. Miner. Resour., 2016, no. 4, pp. 243–261.

  52. Kuznetsov, A.P., Maslennikov, V.V., Zaikov, V.V., and Sobetskii, V.A., Fauna in hydrothermal sulfide mounds in the Uralian paleocean (Middle Devonian), Dokl. Akad. Nauk SSSR, 1988, vol. 303, no. 6, pp. 1477–1481.

    Google Scholar 

  53. Kuznetsov, A.P., Maslennikov, V.V., and Zaikov, V.V., Hydrothermal zone fauna in the Silurian paleocean in the southern Urals, Izv. RAN, Ser. Biol., 1993, no. 4, pp. 525–534.

  54. Lein, A.Yu., Cherkashov, G.A., Ul’yanov, A.A., et al., Mineralogy and geochemistry of sulfide ores from the Logachev-2 and Rainbow fields: Similar and distinctive features, Geochem. Int., 2003, no. 3, pp. 271–294.

  55. Lisitsyn, A.P., Protsessy okeanskoi sedimentatsii (Processes of Oceanic Sedimentation), Moscow: Nauka, 1978.

  56. Lisitsyn, A.P., Bogdanov, Yu.A., Zonenshain, L.P., et al., Black smokers in the Gulf of California, Izv. Akad. Nauk SSSR, Ser. Geol., 1989, no. 5, pp. 3–18.

  57. Little, C.T.S., Herrington, R., Maslennikov, V.V., et al., Silurian high-temperature hydrothermal vent community from the southern Urals, Russia, Nature, 1996, vol. 385, no. 9, pp. 146–148.

    Google Scholar 

  58. Maslennikov, V.V., Litogenez i kolchedanoobrazovanie (Lithogenesis and Massive Sulfide Formation), Miass: IMin Uro RAN, 2006.

  59. Maslennikova, S.P. and Maslennikov, V.V., Sul’fidnye truby paleozoiskikh “chernykh kuril’shchikov” (na primere Urala) (Sulfide Chimneys of Paleozoic “black smokers”: An example from the Urals), Yekaterinburg: Ural Otd. Ross. Akad. Nauk, 2007.

  60. Maslennikov, V.V., Maslennikova, S.P., Lein, A.Yu., and Bogdanov, Yu.A., Comparative analysis of the mineralogy and geochemistry of sulfide chimneys in the Paleozoic and modern “black smokers”, in Fundamental’nye issledovaniya okeanov i morei (Fundamental Studies of Oceans and Seas), Moscow: Nauka, 2006, part 2, pp. 151–171.

  61. Mills, R.A., Hydrothermal deposits and metalliferous sediments from TAG, 26° N Mid-Atlantic Ridge, in Hydrothermal Vents and Processes, Parson, L.M., Walker, C.L., Dixon, D.P., Eds., Geol. Society Spec. Publ. London, 1995, no. 87, pp. 121–132.

  62. Morimoto, N. and Koto, K., Anilite, Cu7S4, a new mineral, Am. Mineral., 1969, vol. 54, pp. 1256–1267.

    Google Scholar 

  63. Morimoto, N. and Koto, K., Phase relations of the Cu–S system at low temperatures: Stability of anilite, Am. Mineral., 1970, vol. 55, pp. 106–117.

    Google Scholar 

  64. Mozgova, N.N., Borodaev, Yu.S., Gablina, I.F., et al., Isocubanite from sulfide ores in the Rainbow hydrothermal fields (MAR, 36°14′ N), Zap. Vses. Mineral. O-va, 2002, no. 5, pp. 61–70.

  65. Mozgova, N.N., Borodaev, Yu.S., Gablina, I.F., et al., Zoned chimneys of black smokers in the Rainbow hydrothermal fields (MAR, 36°14′ N), Nov. Dann. Mineral., 2004, no. 39, pp. 102–109.

  66. Mozgova, N.N., Borodaev, Yu.S., Gablina, I.F., Cherkashev, G.A., and Stepanova, T.V., Mineral assemblages as indicators of the maturity of oceanic hydrothermal sulfide mounds, Lithol. Miner. Resour., 2005, no. 4, pp. 293–319.

  67. Mozgova, N.N., Borodaev, Yu.S., Gablina, I.F., et al., Peculiarities in the transformation of mineral assemblages in copper sulfide ores in the Krasnov hydrothermal field (16°38′ N MAR), Nov. Dann. Mineral., 2007, no. 43, pp. 62–76.

  68. Mumme, W.G., Sparrow, G.J., and Wolker, G.S., Roxbyite, a new sulphide mineral from the Olympic Dam deposit, Roxby Downs, South Australia, Mineral. Mag., 1988, vol. 52, pp. 323–330.

    Google Scholar 

  69. Petrova, V.V., Role of the biogenic silica in the formation of authigenic minerals in the sedimentary layer in the central Pacific, in Sovremennye gidrotermy i mineraloobrazovanie (Modern Hydrotherms and Mineral Formation), Moscow: Nauka, 1988, pp. 140–161.

  70. Potter, R.W., An electrochemical investigation on the system copper – sulfur, Econ. Geol., 1977, vol. 72, pp. 1524–1542.

    Google Scholar 

  71. Pushelt, H. and Laschek, D., Marine Erzvorcommen in Roten Meer, Frider. Zeitschr. Univ. Karlsruhe, 1984, no. 34, pp. 3–17.

  72. Rona, P.A., Klinkhammer, G., Nelsen, T.A., et al., Black smokers, massive sulfides and vent biota at the Mid-Atlantic Ridge, Nature, 1986a, vol. 321, pp. 33–37.

    Google Scholar 

  73. Rona, P.A., Pockalny, R.A., and Thompson, G., Geologic setting and heat transfer of black smokers at TAG hydrothermal field, Mid-Atlantic Ridge, 26° N, EOS. Am. J. Union Trans., 1986b, vol. 67, no. 44, p. 1021.

    Google Scholar 

  74. Roseboom, E.H., Djurleite, Cu1.96S, Am. Mineral., 1962, vol. 47, pp. 1181–1184.

    Google Scholar 

  75. Roseboom, E.H., An investigation of the system Cu–S and some natural copper sulfides between 25° and 700°C, Econ. Geol., 1966, vol. 61, no. 4, pp. 641–671.

    Google Scholar 

  76. Rusakov, V.Yu., Shilov, V.V., Ryzhenko, B.N., et al., Mineralogical and geochemical zoning of sediments at the Semenov Cluster of hydrothermal fields, 13°31′–13°30′ N, Mid-Atlantic Ridge, Geochem. Int., 2013, no. 8, pp. 646–669.

  77. Semkova, T.V., Gablina, I.F., Stepanova, T.V., and Gor’kova, N.V., Roxbyite and its formation conditions in modern ore-bearing sediments in the Logatchev-1 hydrothermal field (Mid-Atlantic Ridge, 14°45′ N), Novye Dann. Miner., 2006, no. 41, pp. 33–45.

  78. Sharkov, E.V., Abramov, S.S., Simonov, V.A., et al., Hydrothermal alteration and sulfide mineralization in gabbroids of the Markov Deep (Mid-Atlantic Ridge, 6° N), Geol. Ore Depos., 2007, vol. 49, no. 6, pp. 467–486.

    Google Scholar 

  79. Shilov, V.V. and Samovarov, M.L., Prospecting works at 20°08′ N and geological-geophysical studies to detect GPS ore occurrences in the MAR axial zone (19°15′–20°05′ N), Otchet po gosudarstvennomu kontraktu, no. 15/06/102-11 (Report on State Contract no. 15/06/102-11), Lomonosov: AO PMGRE, 2011.

  80. Skinner, B.Y., Stability of the tetragonal polymorph of Cu2S, Econ. Geol., 1970, vol. 65, pp. 724–730.

    Google Scholar 

  81. Toth, J.R., Deposition of submarine crusts rich in manganese and iron, Geol. Soc. Am. Bull., 1980, vol. 91, pp. 44–54.

    Google Scholar 

  82. Vikentyev, I.V., Bortnikov, N.S., Bogdanov, Yu.A., et al., Mineralogy of hydrothermal deposits in the Rainbow field in the Azores region, in Metallogeniya drevnikh i sovremennykh okeanov—2000: Otkrytie, otsenka, osvoenie mestorozhdenii (Metallogeny of Ancient and Modern Oceans – 2000: Discovery, Assessment, and Development of Deposits), Miass: IMin UrO RAN, 2000, pp. 103–110.

  83. Whiteside, L.S. and Goble, R.J., Structural and compositional changes in copper sulfides during leaching and dissolution, Can. Mineral., 1986, vol. 24, pp. 247–258.

    Google Scholar 

  84. Wirsen, C.O., Jannash, H.W., and Molyneaux, S.J., Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites, J. Geophys. Res., 1993, vol. 98, no. 6, pp. 9693–9703.

    Google Scholar 

  85. Zierenberg, R., Koski, R.A., Morton, J.L., et al., Genesis of massive sulfide deposits on a sediment-covered spreading center, Escabana Trough, southern Gorda Ridge, Econ. Geol., 1993, vol. 88, no. 8, pp. 2069–2098.

    Google Scholar 

Download references


This work was accomplished under the State Task of GIN with the financial support of the Russian Foundation for Basic Research (project no. 14-05-00480).

Author information

Authors and Affiliations


Corresponding author

Correspondence to I. F. Gablina.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gablina, I.F. Distinctive Features of Two Genetic Types of Sulfide Ores in the Central Atlantic. Lithol Miner Resour 57, 143–160 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Mid-Atlantic Ridge
  • modern deep-sea sulfide ores
  • carbonate sediments
  • metal- and ore-bearing sediments
  • sulfide formation conditions
  • black smokers
  • hydrothermal-metasomatic ores