Skip to main content

Riftogenesis in the Arctic: Processes, Evolution Trend, and Hydrocarbon Generation


The article examines the regional patterns of rifting in the Arctic and assesses the impact of large (supra-regional) rift systems on the geological evolution of the region. Against the background of the description of main Arctic structures, the Atlantic–Arctic rift system (AARS) is described as a tectonotype of a large planetary geophorm that has evolved from continental rifting to spreading proper with the development of a full-fledged ocean. The main properties of this system are its development towards the North Pole, the longitudinal orientation of the rifts, their separation by latitudinal faults, and predominantly sinistral shear displacement of individual segments. We believe that such a structure reflects the influence of the rotational factor on distribution of lithospheric masses of the Earth. Their tendency to the equilibrium position relative to the rotation axis is implemented by movements towards the equator and along it. The outflow of masses to low latitudes makes possible the growth of the rift system, but does not contribute to its further development after reaching the Pole. This phenomenon is of general nature and determines the development of all longitudinal rift systems, which leads to their spatial convergence and attenuation of dynamics in the circumpolar space. Within the Arctic region, in addition to the Atlantic–Arctic system, areas of possible termination of the West Siberian, Okhotsk–Verkhoyansk, and East Pacific rift systems are considered. It is assumed that their evolution initiated the destruction of the continental lithosphere of the Arctic region and determined the subsequent transformations of its structure. Special attention is paid to the problems of the possible influence of rifting on the hydrocarbon generation due to serpentinization of hyperbasites, when the lithosphere is penetrated by faults to the upper mantle depths, as well as on the remobilization of gases as a result of the disturbance of both gas hydrate reservoirs and permafrost. It is shown that the greatest generation of methane is generally associated with the development of faults in the cold lithosphere and serpentinization of mantle rocks.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. Andieva, T.A., Tectonic position and main structures in the Laptev Sea, Neftegaz. Geol. Teor. Prakt., 2008, vol. 3, no. 1, pp. 1–28.

    Google Scholar 

  2. ANSS Earthquake Composite Catalog. 2014.

  3. Antobreh, A.A., Faleide, J.I., Tsikalas, F., and Planke, S., Riftshear architecture and tectonic development of the Ghana margin deduced from multichannel seismic reflection and potential field data, Mar. Petrol. Geol., 2009, vol. 26, pp. 345–368.

    Google Scholar 

  4. Aplonov, S.V., Geodinamika rannepaleozoiskogo Obskogo okeana (Geodynamics of the Early Paleozoic Ob Ocean), Moscow: IO AN SSSR, 1987.

  5. Arkticheskii bassein (geologiya i morfologiya) (The Arctic Basin: Geology and Morphology), Kaminskii, V.D, Piskarev, A.L, and Poselov, V.A, Eds., St. Petersburg: VNIIOkeangeologiya, 2017.

  6. Armstrong, R.L., Cordilleran metamorphic core complexes – from Arizona to southern Canada, An. Rev. Earth Planet. Sci., 1982, vol. 10, pp. 129–154.

    Google Scholar 

  7. Avetisov, G.P., Seismoaktivnye zony Arktiki (Seismoactive Zones in the Arctic), St. Petersburg: VNIIOkeanologiya, 1996.

  8. Avetisov, G.P., Eshche raz o zemletryaseniyakh morya Laptevykh. Geologo-geofizicheskie kharakteristiki litosfery Arkticheskogo regiona (Once More about Earthquakes in the Laptev Sea), St. Petersburg: VNIIOkeangeologiya, 2000, no. 3, pp. 104–114.

  9. Avetisov, G.P. and Guseva, Yu.V., Deep structure of the Lena delta region based on seismological data, Sov. Geol., 1991, no. 4, pp. 73–81.

  10. Baranov, B.V., Dozorova, K.A., and Salomatin, A.S., Pockmarks on the western slope of Baranov Island, Vestn KRAUNTs. Nauki Zemle, 2011, no, no. 18, pp. 31–43.

  11. Barentsevskaya shel’fovaya plita (The Barents Shelf Plate), Gramberg, I.S., Ed., Leningrad: Nedra, 1988.

    Google Scholar 

  12. Berndt, M.E., Allen, D.E., and Seyfried, W.E., Reduction of CO2 during serpentinization of olivine at 300°C and 500 bar, Geology, 1996, vol. 24, no. 4, pp. 351–354.

    Google Scholar 

  13. Bogdanov, N.A., Neotectonics of the Arctic Ocean, Geotectonics, 2004, no. 3, pp. 166–181.

  14. Bogolepov, A.K., Zhuravlev, V.A., Shipilov, E.V., and Yunov, A.Yu., New data on the deep structure of the Kara Sea (based on the results of geological-geophysical studies), Dokl. Akad. Nauk SSSR, 1990, vol. 315, no. 1, pp. 159–162.

    Google Scholar 

  15. Boldyrev, S.A., Seismogeodinamika Sredinno-Atlanticheskogo khrebta (Seismodynamics of the Mid-Atlantic Ocean), Moscow: MGK, 1998.

  16. Bonatti, E., Raznitsin, Y., Bortoluzzi, G., et al., Geological studies of the eastern part of the Romanche Transform (Equatorial Atlantic): A first report, Gorn. Geol., 1991, vol. 53, no. 2, pp. 31–48.

    Google Scholar 

  17. Brozena, J.M., Childers, V.A., Lawver, L.A., et al., New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: Implications for basin development, Geology, 2003, vol. 31, no. 9, pp. 825–828.

    Google Scholar 

  18. Bruvoll, V., Kristoffersen, Y., Coakley, B.J., and Hopper, J.R., Hemipelagic deposits on the Mendeleev and northwestern Alpha submarine ridges in the Arctic Ocean: Acoustic stratigraphy, depositional environment and an inter-ridge correlation calibrated by the ACEX results, Mar. Geophys. Res., 2010, vol. 31, pp. 149–171.

    Google Scholar 

  19. Bryan, S. and Ernst, R., Revised definition of Large Igneous Province (LIP), Earth Sci. Rev., 2008, vol. 86, pp. 175–202.

    Google Scholar 

  20. Cande, S.C. and Kent, D.V., Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 1995, vol. 100, no. B4, pp. 6093–6095.

    Google Scholar 

  21. Chamov, N.P., Lithogenesis of sediments in accretionary prisms an d its role in the formation of the continental core material, in Tr. GIN RAN, 2002, no. 542, pp. 38–55.

  22. Chamov, N.P., Stroenie i razvitie Srednerussko-Belomorskoi provintsii v neoproterozoe (Structure and Evolution of the Middle Russia–Belomorian Province), 2016.

    Google Scholar 

  23. Chamov, N.P., Dobrolyubova, K.O., Peive, A.A., and Sokolov, S.Yu., Signs of the presence of gas hydrates in the upper part of the sedimentary cover on walls of the Molloy Fracture zone (Fram Strait, Norway–Greenland Basin), Byull. MOIP, Ser. Geol., 2008, no. 2, pp. 51–60.

  24. Charlou, J.L., Fouquet, Y., Bougault, H., et al., Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′ N fracture zone and the Mid-Atlantic Ridge, Geochim. Cosmochim. Acta, 1998, vol. 62, no. 13, pp. 2323–2333.

    Google Scholar 

  25. Chekhovich, V.D., Lobkovskii, L.I., Kononov, M.V., et al., The Late Cretaceous–Paleogene en echelon transform zone as a fragment of the boundary between the Eurasian and North American plates in the crust of the Chukotka–Alaska Shelf, Dokl. Earth Sci., 2014, vol. 459, no. 6, pp. 1523–1527.

    Google Scholar 

  26. Coakley, B., Brumley, K., Lebedeva-Ivanova, N., and Mosher, D., Exploring the geology of the central Arctic Ocean; understanding the basin features in place and time, J. Geol.Soc. London, 2016, vol. 173, no. 6, pp. 967–987.

    Google Scholar 

  27. Cochran, J.R., Kurras, G.J., Edwards, M.H., and Coakley, B.J., The Gakkel Ridge: bathymetry, gravity anomalies, and crustal accretion at extremely slow spreading rates, J. Geophys., 2003, vol. 108, pp. 2116–2137.

    Google Scholar 

  28. Cochran, J.R., Edwards, M.H., and Coakley, B.J., Morphology and structure of the Lomonosov Ridge, Arctic Ocean, Geochem. Geophys. Geosyst., 2006, vol. 7, no. 5, pp. 1–26.

    Google Scholar 

  29. Coney, P.J. and Harms, T.A., Cordilleran metamorphic complexes: Cenozoic relics of Mesozoic compression, Geology, 1984, vol. 12, pp. 550–554.

    Google Scholar 

  30. Cook, D., Fujita K., and McMullen, C.A., Present-day plate interactions in North Asia, North American, Eurasian, and Ochotsk plates, J. Geodyn., 1986, no. 6, pp. 33–51.

  31. Daragan-Sushchova, L.A., Petrov, O.V., Daragan-Sushchov, Yu.I., et al., Evolution history of the Eurasian Basin in the Arctic Ocean based on seismic data, Region. Geol. Metallogen., 2020, no. 84, pp. 25–44.

  32. Degazatsiya Zemli i geotektonika (Degassing in the Earth and Geotectonics), Kropotkin, P.N., Ed., Moscow: Nauka, 1980.

    Google Scholar 

  33. Dmitriev, L.V. and Sokolov, S.Yu., Geodynamics of three contrasting types of oceanic magmatism and their reflection in the data of seismic tomography, Petrology, 2003, vol. 11, no. 6, pp. 597–612.

    Google Scholar 

  34. Dmitriev, L.V., Bazylev, B.A., Silant’ev, S.A., et al., The hydrogen and methane formation during serpentinization of mantle ultramafics in the ocean and origin of oil, Ross. Zh. Nauk Zemle, 1999, vol. 1, no. 6, pp. 511–519.

    Google Scholar 

  35. Døssing, A., Jackson, H.R., Matzka, J., et al., On the origin of the Amerasia Basin and the high arctic Large Igneous Province – Results of new aeromagnetic data, Earth Planet. Sci. Lett., 2013, vol. 363, pp. 219–230.

    Google Scholar 

  36. Dove, D., Coakley, B., Hopper, J., and Kristoffersen, Y., Bathymetry, controlled source seismic and gravity observations of the Mendeleev Ridge: implications for ridge structure, origin, and regional tectonics, Geophys. J. Int., 2010, vol. 183, pp. 481–502.

    Google Scholar 

  37. Drachev, S.S., On the basement tectonics of the Laptev Sea self, Geotectonics, 2002, no. 6, pp. 483–497.

  38. Eardley, A., Structural Geology of North America, Harper, 1951. Translated under the title Strukturnaya geologiya Severnoi Ameriki, Shatskii, N.S, Ed., Moscow: IL, 1954.

  39. Eldholm, O. and Coffin, M., Large Igneous Provinces and plate tectonics, Geophys. Monogr. Ser., 2000, vol. 121, pp. 309–326.

    Google Scholar 

  40. Emery, K.O. and Uchupi, E., The Geology of the Atlantic Ocean, New York: Springer, 1984, p. 1050.

    Google Scholar 

  41. Engen, O., Eldhom, O., and Bungum, H., The Arctic Plate boundary, J. Geophyis. Res., 2003, vol. 108, no. B2, pp. 1–17.

    Google Scholar 

  42. Filatova, N.I. and Khain, V.E., Structural units of the Central Arctic and their relations to the Mesozoic Arctic Plume, Geotectonics, 2009, no. 6, pp. 462–485.

  43. Gatinsky, Yu.G. and Prokhorova, T.V., On the problem of distinction between recent geodynamics of Central and East Asia, Phys. Solid Earth, 2020, vol. 56, no. 1, pp. 125–132.

    Google Scholar 

  44. Gernigon, L., Franke, D., Geoffroy, L., et al., Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian-Greenland Sea, Earth Sci. Rev., 2019, vol. 196.

  45. Gilyazova, S.M., Secondary reservoirs rocks of the pre-Jurassic rock complex in the Frolov megabasin and perspectives of their petroleum potential, Sovrem. Naukoemk. Tekhnol., 2009, no. 9, pp. 126–128.

  46. Glebovsky, V.Yu., Magnetic anomalies and the history of the Reykjanes Ridge seafloor spreading, XXI General Assembly, Abstracts of Papers, Boulder: IUGG, 1995, no. A180, pp. 2–14.

  47. Glebovsky, V.Yu., Karasik, A.M., Merkur’ev, S.A., et al., Peculiarities of accretion in the North Atlantic based on areal hydromahneyic survey on the Reykjanes Ridge and in Iceland Basin, in Elektromagnitnaya induktsiya v Mirovom okeane (Electromagnetic Induction in the World Ocean), Moscow: Nauka, 1990.

  48. Glebovsky, V.Yu., Kaminsky, V.D., Minakov, A.N., et al., Formation of the Eurasia basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field, Geotectonics, 2006, vol. 40, no. 4, pp. 263–281.

    Google Scholar 

  49. Gordin, V.M., Interpretation of the anomalous magnetic field in the Vainom–Mathews oceans, in Spornye aspekty tektoniki plit i vozmozhnye al’ternativy (Disputed Aspects of the Plate Tectonics and Possible Alternatives), Sholpo, V.N., Ed., Moscow: OIFZ RAN, 2002.

  50. Grachev, A.F., Demenitskaya, P.M., and Karasik, A.M., The Mid-Arctic Ridge and its continental continuation, Geomorfologiya, 1970, no. 1, pp. 42–45.

  51. Grachev, A.F., Demenitskaya, R.M., and Karasik, A.M., Problems in the link between the Momsk continental rift and the Gakkel Mid-Atlantic Ridge, in Geofizicheskie metody razvedki v Arktike (Geophysical Exploration Methods in the Arctic), Leningrad: NIIGA, 1973, no. 8, pp. 56–75.

  52. Gramberg, I.S., Demenitskaya, R.M., and Sekretov, S.B., Riftogenic graben system on the Laptev Sea shelf: A missing chain in the Gakkel Ridge–Momsk Ridge rift belt, Dokl. Akad. Nauk SSSR, 1990, vol. 311, no. 3, pp. 689–694.

    Google Scholar 

  53. Gramberg, I.S., Kos’ko, M.K., Lazurkin, D.V., and Pogrebitskii, Yu.E., Main stages and landmarks in the Neogaean evolution of the Arctic continental margin of the Soviet Union, Sov. Geol., 1984, no. 7, pp. 32–40.

  54. Gramberg, I.S., Shkola, I.V., Bro, E.G., et al., Parametric boreholes on the Barents Islands and Kara Seas, Sov. Geol., 1985, no. 1, pp. 95–98.

  55. Grantz A., May S.D., Taylor P.T., Lawver L.A. Canada basin, in Phanerozoic Stratigraphy of Northwind Ridge, Magnetic Anomalies in the Canada Basin, and the Geometry and Timing of Rifting in the Amerasia Basin, Arctic Ocean, Grantz, A., Johnson, L., and Sweeney, J.F., Eds., The Geology of North America. The Arctic Ocean Region, Grantz, A., Clark, D.L., Phillips, R.L., et al., Eds., GSA Bull., 1998, vol. 110, no. 6, pp. 801–820.

  56. Grantz, A., Pease, V.L., Willard, D.A., et al., Bedrock cores from 89° North: implications for the geologic framework and Neogene paleooceanology of the Lomonosov Ridge and a tie to the Barents shelf, GSA Bull., 2001, vol. 113, no. 10, pp. 1272–1284.

    Google Scholar 

  57. Grantz, A., Scott, R.A., and Drachev, S.S., Map showing the sedimentary successions of the Arctic region (58°–64° to 90°N) that may be prospective for hydrocarbons, Am. Ass. Petrol. Geol. GIS-UDRIL. Open-File Spatial Libr., 2009.

    Google Scholar 

  58. Heezen, B., Tharp, M., and Ewing, M., The Floors of the Oceans: The North Atlantic, New York: Geol. Soc. Am. Spec. Paper 65, 1959. Translated under the title DnoAtlanticheskogo okeana, Moscow: IL, 1962.

  59. Hekinian, R., Juteau, T., Gracia, E., et al., Submersible observations of Equatorial Atlantic mantle: The St. Paul Fracture Zone region, Marin. Geophys. Res., 2000, vol. 21, pp. 529–560.

    Google Scholar 

  60. Herron, E.M., Dewey, J.F., and Pitman, W.C., Plate tectonic model for the evolution of the Arctic, Geology, 1974, vol. 2, pp. 377–380.

    Google Scholar 

  61. Hildebrand, R.S., Dismemberment and northward migration of the Cordilleran orogen: Baja-BC resolved, GSA Today, 2015, vol. 25, no. 11, pp. 4–11.

    Google Scholar 

  62. Houston, M. Buffer, R., et al., Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises, AAPG Bull., 1979, vol. 63, pp. 2204–2213.

    Google Scholar 

  63. Hughes, T., Coriolis perturbation of mantle convection related to a two-phase convection model, Tectonophysics, 1973, vol. 18, pp. 215–230.

    Google Scholar 

  64. Hyndman, R.D., Foucher, J.P., Yamato, M., et al., Deep-sea bottom-simulating reflectors: calibration of the base of the hydrate stability field as used for heat flow estimates, Mar. Geol., 1992, vol. 109, pp. 289–301.

    Google Scholar 

  65. Il’ichev, I.V. and Shevaldin, Yu.V., Nature of the West Pacific transition zone, Dokl. Akad. Nauk SSSR, 1986, vol. 290, no. 3, pp. 570–573.

    Google Scholar 

  66. Imaev, V.S., Imaeva, L.P., and Koz’min, B.M., Seismotektonika Yakutii (Seismotectonics in Yakutia), Gusev, G.S., Ed., Moscow: GEOS, 2000.

    Google Scholar 

  67. Imaev, V.S., Imaeva, L.P., and Koz’min, B.M., Oceanic and continental rifts in NE Asia and at their conjunction (seismotectonic analysis), Litosfera, 2004, no. 4, pp. 44–61.

  68. Ivanov, K.S., Erokhin, Yu.V., Pisetskii, V.B., et al., New data on the structure of the West Siberian Plate basement, Litosfera, 2012, no. 4, pp. 91–106.

  69. Ivanov, K.S., Panov, V.F., Pisetskii, V.B., et al., Deep oil and fractures: Geological implication of some geophysical and technologies, Elektron. Zh. Glubinn. Neft, 2013, vol. 1, no. 10, pp. 1545–1555.

    Google Scholar 

  70. Jokat, W. and Micksch, U., Sedimentary structure of the Nansen and Amundsen basins, Arctic Ocean, Geophys. Rev. Lett., 2004, vol. 31, p. L02603.

    Article  Google Scholar 

  71. Jokat, W., Weigelt, E., Kristofferssen, Y., Rasmussen, T., and Schone, T., New insights into the evolution of the Lomonosov Ridge and the Eurasian Basin, Geophys. J. Int., 1995, vol. 122, pp. 378–392.

    Google Scholar 

  72. Kaban’kov, V.Ya., Andreeva, I.A., Ivanov, V.I., and Petrova, V.I., The geotectonic nature of the Central Arctic morphostructures and geological implications of bottom sediments for its interpretation, Geotectonics, 2004, no. 6, pp. 430–442.

  73. Karasik, A.M., Ustritskii, V.I., and Khramov, A.N., History of the Arctic Ocean evolution, in Geologiya Arktiki. 27 MGK. Dokl. Kol. 04 (The Arctic Geology: 27 IGC. Rep. Kol. 04), Moscow: Nauka, 1984, vol. 4, pp. 151–159.

  74. Karyakin, Yu.V. and Shipilov, E.V., Geochemical specifics and 40Ar/39Ar age of the basaltoid magmatism of the Alexander Land, Northbrook, Hooker, and Hayes Islands (Franz Josef Land Archipelago), Dokl. Earth Sci., 2009, vol. 425, no. 2, pp. 260–263.

    Google Scholar 

  75. Karyakin, Yu.V., Lyapunov, S.M., Simonov, V.A., et al., Mesozoic magmatic complexes in the Frantz Josef Archipelago, in Geologiya polyarnykh oblastei Zemli (Geology of the Earth’s Polar Regions), Moscow: GEOS, 2009, vol. 1, pp. 257–263.

  76. Katterfel’d, G.N., Lik Zemli (Image of the Earth), Moscow: GIGL, 1962.

    Google Scholar 

  77. Kelemen, P.B., Kikawa, E., Miller, D.J., et al., ODP Leg 209 drills into mantle peridotite along the Mid-Atlantic Ridge from 14° N to 16° N, JOIDES J. Proc. ODP 209, Init. Rep., 2004, vol. 30, no. 1, pp. 14–19.

  78. Khain, V.E., Regional’naya geotektonika. Severnaya i Yuzhnaya Amerika, Antarktida, Afrika (Regional Geitectonics: North and South America, Antarctica, and Africa), Moscow: Nedra, 1971.

  79. Khain, V.E., Regional’naya geotektonika. Vneal’piiskaya Aziya i Avstraliya (Regional Geotectonics: Extraalpine Asia and Australia), Moscow: Nedra, 1979.

  80. Khain, V.E., Tektonika kontinentov i okeanov (Tectonics of Continents and Oceans), Moscow: Nauchn. Mir, 2001.

  81. Khain, V.E., Filatova, N.I., and Polyakova, I.D., Tektonika, geodinamika i perspektivy neftegazonosnosti vostochno-arkticheskikh morei i ikh kontinental’nogo obramleniya (Tectonics, Geodynamics, and Perspectives of Petroleum Potential in the East Arctic Seas and Their Framing), Moscow: Nauka, 2009.

  82. King, Ph.B.,The evolution of North America, Princeton Univ. Press, 1959 Translated under the title Geologicheskoe razvitie Severnoi Ameriki, Khain, V.E., Ed., Moscow: IL, 1961.

    Google Scholar 

  83. Klenova, M.V. and Lavrov, V.M., Geologiya Atlanticheskogo okeana (Geology of the Atlantic Ocean), Moscow: Nauka, 1975.

  84. Knudsen, C., Hopper, J.R., Bierman, P.R., et al., Samples from the Lomonosov Ridge place new constraints on the geological evolution of the Arctic Ocean, in Circum-Arctic Lithosphere Evolution, Pease, V. and Coakley, B., Eds., Geol. Soc. London. Spec. Publ., 2017, vol. 460, pp. 397–418.

  85. Kulakov, I.Yu., Gaina, K., Dobretsov, N.L., et al., Reconstruction of plate dislocations in the Arctic region based on complex analysis of gravitation, magnetic, and seismic anomalies, Geol. Geofiz., 2013, vol. 54, no. 8, pp. 1108–1125.

    Google Scholar 

  86. Laverov, N.P., Lobkovskii, L.I., Kononov, M.V., et al., A geodynamic Model of the evolution of the Arctic Basin and adjacent territories in the Mesozoic and Cenozoic and the outer limit of the Russian continental shelf, Geotectonics, 2013, no. 1, pp. 1–30.

  87. Laxon, S. and McAdoo, D., Satellites provide new insights into polar geophysics, EOS-AGU Trans., 1998, vol. 79, pp. 69–72.

    Google Scholar 

  88. Le Gall, B., Tshoso, G., and Dyment, J., The Okavango giant mafic dyke swarm (NE Botswana): its structural significance within the Karoo Large Igneous Province, J. Struct. Geol., 2005, vol. 27, pp. 2234–2255.

    Google Scholar 

  89. Ligi, M., Bonatti, E., Gasperini, L., and Poliakov, A.N.B., Oceanic broad multifault transform plate boundaries, Geology, 2002, vol. 30, pp. 11–14.

    Google Scholar 

  90. Lister, G.S. and Davis, G.A., The origin of metamorphic complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A., J. Struct. Geol., 1989, vol. 11, pp. 65–94.

    Google Scholar 

  91. Lothamer, R.T., Early Tertiary wrench faulting in the North Chukchi basin, Chukchi Sea, Alaska, Proc. ICAM, 1992, U.S Miner. Manag. Serv., OCS Study, MMS 94-0040, pp. 251–256.

  92. Marzoli, A., Bertrand, H., Nasrrddine, Y., et al., The Central Atlantic magmatic province (CAMP) in Morocco, J, Petrol., 2019, vol. 60, no. 5, pp. 945–996.

    Google Scholar 

  93. Mashchenkov, S.P., Astafurova, E.T., Glebovskii, V.Yu., et al., Model of the deep structure of the Earth’s crust based on a reference geophysical section in the Kara Sea, in Geologo-geofizicheskie kharakteristiki litosfery Arkticheskogo regiona (Geological-Geophysical Characteristics of Lithosphere in the Atlantic Ocean), St. Petersburg: VNIIOkeangeologiya, 2002, no. 4, pp. 69–89.

  94. Mazarovich, A.O. and Sokolov, S.Yu., Tectonic subdivision of the Chukchi and East Siberian Seas, Russ. J. Earth Sci., 2003, vol. 5, no. 3, pp. 185–202.

    Google Scholar 

  95. McWhae, J.R., Tectonic history of Northern Alaska, Canadian Arctic, and Spitsbergen regions since Ear1y Cretaceous, Am. Ass. Petrol. Geol. Bull., 1986, vol. 70, no. 4, pp. 430–450.

    Google Scholar 

  96. Michael, P.J. and Langmuir, C.H., Dick, H.J., et al., Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel Ridge, Arctic Ocean, Nature, 2003, vol. 423, no. (6943), pp. 956–961.

  97. Milanovskii, E.E., Riftogenesis and its role in the tectonic structure and Meso–Cenozoic geodynamics, Geotektonika, 1991, no. 1, pp. 3–20.

  98. Milanovskii, E.E. and Nikishin, A.M., The West Pacific ridt belt, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 1988, vol. 63, no. 4, pp. 3–15.

    Google Scholar 

  99. Miller, E.L., Toro, J., Gehrels, G., et al., New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology, Tectonics, 2006, vol. 25, pp. 1–19.

    Google Scholar 

  100. Moore, T.E., Wakkace, W.K., Dird, K.J., et al., Geology of Northern Alaska, in Geology of the North America, Plafker, G. and Berg, H.C., Eds., Boulder: Geol. Soc. Am. 1994, vol. G-1, pp. 49–109.

    Google Scholar 

  101. Moulin, M., Aslanian, D., and Unternehr, P., A new starting point for the South and Equatorial Atlantic Ocean, Earth Sci. Rev., 2010, vol. 98, pp. 1–37.

    Google Scholar 

  102. Müller, C. and Jokat, W., Seismic evidence for volcanic activity discovered in Central Arctic, EOS, 2000, vol. 81, no. 24, pp. 265–269.

    Google Scholar 

  103. Nikishin, A.M., Gaina, C., Petrov, E.I., et al., Eurasia Basin and Gakkel Ridge, Arctic Ocean: Crustal asymmetry, ultraslow spreading and continental rifting revealed by new seismic data, Tectonophysics, 2018, vol. 746, pp. 64–82.

    Google Scholar 

  104. Nikishin, A.M., Malyshev, N.A., and Petrov, E.I., Main problems in the structure and history of the geological evolution of the Arctic Ocean, Vestn. Ross. Akad. Nauk, 2020, vol. 90, no. 5, pp. 434–446.

    Google Scholar 

  105. O’Driscoll, E.S.T., The double helix in global tectonics, Tectonophysics, 1980, vol. 63, pp. 397–417.

    Google Scholar 

  106. Ob"yasnitel’naya zapiska k Tektonicheskoi karte morei Karskogo i Laptevykh i severa Sibiri (masshtab 1 : 2 500 000) (Explanatory Note to Tectonic Map of the Kara and Laptev Seas in Northern Siberia, Scale 1 : 2 500 000), Bogdanov, N.A. and Khain, V.E., Eds., Moscow: ILRAN, 1998.

  107. Pan, C., Polar instability, plate motion, and geodynamics of mantle, J. Phys. Earth, 1985, vol. 33, no. 5, pp. 411–434.

    Google Scholar 

  108. PETRODATA. USGS, 2000 (U.S. Geological Survey world petroleum assessment 2000—Description and results. World Energy Assessment Team. USGS Digital Data. Ser. DDS-60. Multi Disc. Set. Version 1.1).

  109. Petrov, O., Smelror, M., Shokalsky, S., et al., A new international tectonic map of the Arctic (TeMAr) at 1 : 5 m scale and geodynamic evolution in the Arctic region, Geophys. Res. Abstr., 2013, vol. 15, p. 13481.

  110. Poselov, V.A., Butsenko, V.V., and Verba, V.V., Uplifts in the Amerasian subbasin (North Arctic) and their possible analogs in the Atlantic, in 60 let v Arktike, Antarktike i Mirovom okeane (60 Years in the Arctic, Antarctic, and World Ocean), St. Petersburg: VNIIOkeangeologiya, 2008, pp. 275–304.

  111. Poselov, V.A., Avetisov, G.P., Butsenko, V.V., et al., The Lomonosov Ridge as a natural continuation of the Eurasian continental margin in the Arctic Basin, Geol. Geofiz., 2012, vol. 53, no. 12, pp. 1662–1680.

    Google Scholar 

  112. Puchkov, V.N., Plumes: A new word in Geology of the Urals, Litosfera, 2018, vol. 18, no. 4, pp. 483–499.

    Google Scholar 

  113. Pushcharovsky, Yu.M., Peive, A.A., Raznitsin, Yu.N., et al., The Cape Verde Fracture Zone: Lithology and structures (Central Atlantic), Geotektonika, 1988, no. 6, pp. 18–31.

  114. Raznitsin, Yu.N., Geodynamics of ophiolites and formation of hydrocarbon fields on the shelf of eastern Sakhalin, Geotectonics, 2017, no. 1, pp. 1–15.

  115. Raznitsin, Yu.N., Gogonenkov, G.N., Zagorovskii, Yu.A., et al., Serpentinization of mantle peridotites as the main source of deep hydrocarbons in the West Siberian petroliferous basin, Vestn. KRAUNTs. Nauki Zemle, 2020, no. 1, pp. 66–88.

  116. Rekant, P., Sobolev, N., Portnov, A., et al., Basement segmentation and tectonic structure of the Lomonosov Ridge, Arctic Ocean: Insights from bedrock geochronology, J. Geodynam., 2019, vol. 128, pp. 38–54.

    Google Scholar 

  117. Rowley, D.B., Forte, A.M., Rowan, C.J., et al., Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling, Sci. Adv., 2016, vol. 2, p. e1601107.

    Google Scholar 

  118. Salomatin, A.S and Yusupov, V.I., Acoustic investigations of gas “flares” in the Sea of Okhotsk, Oceanology, 2011, vol. 51, no. 5, pp. 911–919.

    Google Scholar 

  119. Saltus, R.W. and Bird, K.J., Digital depth horizon compilations of the Alaskan North Slope and adjacent arctic regions, U.S. Dept. Int., U.S. Geol. Surv., Open-File Report 03-230, Denver, 2003, p. 21.

  120. Saunders, A.D., England, R.W., Reichow, M.K., and White, R.V., A mantle plume origin for the Siberian traps: uplift and extension in the West Siberian Basin, Russia, Lithos, 2005, vol. 79, pp. 407–424.

    Google Scholar 

  121. Schiffer, C., Dorґe A.G., Foulger, G.R., et al., Structural inheritance in the North Atlantic, Earth Sci. Rev., 2019, vol. 206.

  122. Shatskii, N.S., Tectonics of the Arctic, in Geologiya i poleznye iskopaemye severa SSSR (Geology and Mineral Resources in northern Soviet Union), Leningrad: Glavsevmorputi, 1935, vol. 1 (Geology), pp. 149–168.

  123. Shipard, F., Geologiya morya (Marine Geology), Moscow: IL, 1951.

    Google Scholar 

  124. Shipilov, E.V., Generations of spreading basins and stages of breakdown of Wegener’s Pangea in the geodynamic evolution of the Arctic Ocean, Geotectonics, 2008, no. 2, pp. 105–124.

  125. Shipilov, E.V. and Tarasov, G.A., Regional’naya geologiya neftegazonosnykh osadochnykh basseinov Zapadno-Arkticheskogo shel’fa Rossii (Regional Geology of Petroliferous Sedimentary Basins on the West Arctic Sheld of Russia), Apatity: KNTs RAN, 1998.

  126. Shipley T., Houston M.H., Buffer R. et al. Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises, AAPG Bull., 1979, vol. 63, pp. 2204–2213.

    Google Scholar 

  127. Sholpo, V.N., Struktura Zemli: uporyadochennost' ili besporyadok? (Structure of the Earth: Ordering or Disordering?), Moscow: Nauka, 1986.

  128. Simonov, V.A., Kolobov, V.Yu., and Peive, A.A., Petrologiya i geokhimiya geodinamicheskikh protsessov v Tsentral’noi Atlantike (Petrology and Geochemistry of Geodynamic Processes in the Central Atlantic), Novosibirsk: SO RAN, 1999.

  129. Skolotnev, S.G., Fedonkin, M.A., and Korniichuk, A.V., New data on the geological structure of the southwestern Mendeleev Rise, Arctic Ocean, Dokl. Earth Sci., 2017, vol. 476, no. 2, pp. 1001–1006.

    Google Scholar 

  130. Skolotnev, S., Akeksandrova, G., Isakova, T., et al., Fossils from seabed bedrocks: Implication to the nature of the acoustic basement of the Mendeleev Rise (the Arctic Ocean), Mar. Petrol. Geol., 2019, vol. 407, pp. 148–163.

    Google Scholar 

  131. Skolotnev, S.G., Sanfilippo, A., Peyve, A.A., et al., Large-scale structure of the Doldrums multi-fault transform system (7°–8° N Equatorial Atlantic): preliminary results from the 45th expedition of the R/V A.N. Strakhov, Ofioliti, 2020, vol. 45, no. 1, pp. 25–41.

    Google Scholar 

  132. Sokolov, S.Yu., Tectonic evolution of the Knipovich Ridge based on the anomalous magnetic field, Dokl. Earth Sci., 2011, vol. 437, no. 3, pp. 343–348.

    Google Scholar 

  133. Sokolov, S.Yu., State of geodynamic mobility in the mantle based on seismotomography and R and S waves, Vestn. KRAUNTs. Nauki Zemle, 2014, no. 2, pp. 55–67.

  134. Sokolov, S.Yu., The Atlantic–Arctic rift system: Approach to a geodynamic description of based on seismic tomography and sesimicity, Vestnk KRAUNTs. Nauki O Zemle, 2017, no. 4, pp. 79–88.

  135. Sokolov, S.Yu., Tektonika i geodinamika ekvatorial’nogo segmenta Atlantiki (Tectonics and Geodynamics of the Atlantic Equatorial Segment), Moscow: Nauchn. Mir, 2018.

  136. Sokolov, S.Yu., Chamov, N.P., and Kurnosov, V.B., Structure and composition of the Holocene–Pleistocene sediments in the northern Barents Sea, Lithol. Miner. Resour., 2020, no. 6, pp. 415–426.

  137. Sokolov, S.Yu., Chamov, N.P., Khutorskoi, M.D., and Silant’ev, S.A., Indicators of the intensity of geodynamic processes along the Atlantic–Arctic rift system, Geodinam. Tektonofiz., 2020, vol. 11, no. 2, pp. 302–319.

    Google Scholar 

  138. Sokolov, S.Yu., Moroz, E.A., Chamov, N.P., and Patina, I.S., Paleogene–Quaternary Polyfacies Sedimentary System of the Southern Nansen Basin, Lithol. Miner. Resour., 2021, no. 5, pp. 375–389.

  139. Surkov, V.S., Kuznetsov, V.L., Latyshev, V.I., and Smirnov, L.V., Structure of the Earth’s crust in the West Siberian Plate, in Rossiiskaya Arktika: geologicheskaya istoriya, minerageniya, geoekologiya (The RussianArctic: Geological History, Minerageny, and Geoecology), Dodin, D.A. and Surkov, V.S., Eds., St. Petersburg: VNIIOkeanologiya, 2002.

  140. Syvorotkin, V.L. and Pavlenkova, N.I., The world rift system and petroloferous belts on the planet: A new interpretation of the geotectonic position of the Caspian region and possibilities of monitoring, in Prostranstvo i vremya Kaspiiskogo Dialoga(Space and Time in the Caspian Dialogue), Syvorotkin, V.L. and Pavlenkova, N.I., Eds., 2014, vol. 5, no. 1. http:/

  141. Taylor, P.T., Kovacs, L.C., Vogt, P.R., and Johnson, G.L., Detailed aeromagnetic investigation of the Arctic Basin, Geol. Soc. Am. Bull., 1981, vol. 86, pp. 6323–6333.

    Google Scholar 

  142. Tektonicheskaya karta Evrazii. Masshtab 1 : 5 000 000 (Tectonic Map of Eurasia. Scale 1 : 5 000 000), Yanshin, A.L., Eds., Moscow: GIN AN SSSR-GUGK MGiON SSSR, 1966.

  143. Tektonicheskaya karta Evropy. Masshtab: 1 : 1 750 000 (Tectonic Map of Europe. Scale 1 : 1 750 000), Yanshin, A.L., Ed., Moscow: AN SSSR-GGK SSSR, 1964.

  144. Tektonicheskaya karta Barentseva morya i severnoi chasti Evropeiskoi Rossii. Masshtab 1 : 2 500 000 (Tectonic Map of the Barents Sea and Northern Part of Ruropean Russia. Scale 1 : 5 000 000), Bogdanov, N.A. and Khain, V.E., Eds., Moscow: ILRAN, 1996.

  145. Timonin, N.I., Structure of lithosphere and petroleum potential in the Barents–Kara region, Litosfera, 2009, no. 2, pp. 41–55.

  146. Timurziev, A.I., Oil in the West Siberian Basement: Reality and alternatives, Gorn. Vedomosti, 2016, no. 5-6, pp. 100–118.

  147. Trifonov, V.G. and Sokolov, S.Yu., Comparsion of tectonic phases and magnetic field inversions in the Late Mesozoic and Cenozoic, Vestn. Ross. Akad. Nauk, 2018, vol. 88, no. 1, pp. 33–39.

    Google Scholar 

  148. Valyaev, B.M., Tectonoc control of gas-and-oil accumulation and hydrocarbon degassing in the Earth, in Teoreticheskie i regional’nye problemy geodinamiki (Theoretical and Regional Problems in Geodynamics), Moscow: Nauka, 1999, pp. 222–252.

  149. Vanneste, M., Guidard, S., and Mienert, J., Bottom simulating reflection and geothermal gradients across the western Svalbard Margin, Terra Nova, 2005, vol. 17, no. 6, pp. 510–516.

    Google Scholar 

  150. Vernikovsky, V.A., Dobretsov, N.L., Metelkin, D.V., et al., Problems in the teconics and tectonic evolution of the Arctic, Geol. Geofiz., 2013a, vol. 54, no. 8, pp. 1083–1107.

    Google Scholar 

  151. Vernikovsky, V.A., Metelkin, D.V., Vernikovskaya, A.E., et al., Early evolution stages of the Arctic margins (Neoproterozoic–Paleozoic) and plate reconstructions, ICAM VI Proc., 2013b, vol. 265, pp. 265–285.

    Google Scholar 

  152. Waite, W.F., Ruppel, C.D., Boze, L-G., et al., Preliminary global database of known and inferred gas hydrate locations: U.S. Geological Survey data release, 2020.

  153. Walderhaug, H.J., Eide, E.A., Scott, R.A., et al., Palaeomagnetism and 40Ar/39Ar geochronology from the South Taimyr igneous complex, Arctic Russia: Middle–Late Triassic magmatic pulse after Siberian flood-basalt volcanism, Geophys. J. Int., 2005, vol. 163, pp. 501–517.

    Google Scholar 

  154. Welhan, J.A. and Craig, H., Methane, hydrogene, and helium in hydrothermal fluids at 21° N on the East Pacific Rise, Rona, P., Ed., Hydrothermal processes at sea floor spreading centers, 1983, pp. 391–409.

  155. White, R.S., A hot-spot model for early Tertiary volcanism in the N. Atlantic, Geol. Soc. London. Spec. Publ., 1988, vol. 39, pp. 3–13.

    Google Scholar 

  156. Yashin, D.S., Distribution of hydrocarbon gases in bottom sediments, in Atlas: Geologiya i poleznye iskopaemye shel’fov Rossii. Arkticheskie morya Rossii. List 1–9 (Atlas: Geology and Mineral Resources in the Russian Shelves. Arctic Seas in Russia. Sheet 1-9), Moscow: Nauchn. Mir, 2004.

  157. Zonenshain, L.P., Kuz’min, M.I., and Natapov, L.M., Tektonika litosfernykh plit territorii SSSR (Tectonics of Lithospheric Plates in the Soviet Union), Moscow: Nedra, 1990, vol. 2.

Download references


We are grateful to anonymous reviewer and V.A. Rashidov (Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences) for the careful reading of the manuscript, critical comments and constructive recommendations, which significantly improved this paper.


This work was financially supported by the Russian Foundation for Basic Research (project no. 18-05-70 040 “Evolution of the West Arctic lithosphere: Processes and Mechanisms, Evolution Trend, natural resources, and Geological Hazard”). Analysis of seismicity, influence of rotation factor on tectonogenesis, and formation of hydrocarbons were made under the government-financed research program of GIN RAS.

Author information

Authors and Affiliations


Corresponding author

Correspondence to N. P. Chamov.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chamov, N.P., Sokolov, S.Y. Riftogenesis in the Arctic: Processes, Evolution Trend, and Hydrocarbon Generation. Lithol Miner Resour 57, 95–120 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Arctic
  • rifting
  • igneous province
  • degassing
  • hydrocarbons