Skip to main content

Mineralogical–Geochemical Features, Genesis, and Age of Refractory Clays in the Shulepovo Deposit (Ryazan Region, Central European Russia)


The Shulepovo refractory clay deposit was discovered in the 1970s. It consists of subhorizontal kaolinite lenses located at different depths (1–20 m) in a clay–sand sequence tentatively assigned to the Neogene or, possibly, Late Pliocene (?). Application of the X-ray diffraction method coupled with the UV-VIS-NIR spectroscopy established an almost monomineral composition of lenses, with a minimal (not more than 5%) content of quartz, as well as admixture of halloysite and mixed-layer smectite–vermiculite. Calculation of the Hinckley index (HI) for kaolinite revealed a high ordering degree, suggesting its mainly authigenic origin. The bulk chemical composition of kaolinite samples is close to that of pure kaolinite, with an insignificant (not more than 2%) Fe and Ti. Zonation in the chemical composition alteration was not detected within the lens. Studies of the host sand–clay sequence revealed that it can be assigned to the alluvial (channel and oxbow) facies. The formation model of kaolinite lenses in the Shulepovo deposit includes the following processes: major transformations of the terrigenous–clastic kaolinite in stagnant waters, its crystallization, and formation of the authigenic kaolinite due to the decomposition of the clastic aluminosilicate minerals in a chemically aggressive medium.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. Ievleev L.V., Report on the Geological Prospecting and Auditing of Refractory Clays and Bauxites in the Shulepovo Deposit in the Southern Ryazan Region in 1969, 1970, and 1972, Korablino, 1972.


  1. Afonina, G.A. and Leonov, V.G., Studies of the chemical-mineralogical composition and caking capacity of clays in the Shulepovo deposit, Izv. TulGU, 2014, no. 1, pp. 8998.

  2. Aparicio, P. and Galan, E., Mineralogical interference on kaolinite crystallinity index measurements, Clay Clay Miner., 1999, vol. 47, no. 1, pp. 12–27.

    Article  Google Scholar 

  3. Baioumy, H.M., Gilg, H.A., and Taubald, H., Mineralogy and geochemistry of the sedimentary kaolin deposits from Sinai, Egypt: Implications for control by the source rocks, Clay Clay Miner., 2012, vol. 60, no. 6, pp. 633–654.

    Article  Google Scholar 

  4. Baldridge, A.M., Hook, S.J., Grove, C.I., et al., The ASTER Spectral Library Version 2.0, Remote Sensing of Environment, 2009, vol. 113, pp. 711–715.

    Article  Google Scholar 

  5. Berkhin, S.I., Vikulova, N.F., Zvyagin, B.B., et al., Principles for studying the finely dispersed minerals, in Metody izucheniya osadochnykh porod (Methods for Studying Sedimentary Rocks),Strakhov, N.M, Ed., Moscow: Gos. Nauchn.-Tekhn. Izd-vo, 1957.

  6. Bookin, A.S., Drits, V.A., Plancon, A., and Tchoubar, C., Stacking faults in kaolin-group minerals in the light of real structural features, Clay Clay Miner., 1989, vol. 37, pp. 297–307.

    Article  Google Scholar 

  7. Bortnikov, N.S., Novikov, V.M., Savko, A.D., et al., Structural-morphological features of kaolinite from clayey rocks subjected to different stages of lithogenesis: Evidence from the Voronezh Anteclise, Lithol. Miner. Resour., 2013, no. 5, pp. 426–440.

  8. Bortnikov, N.S., Savko, A.D., Novikov, A.M., et al., The Latnenskoe refractory clay deposit (Central Russia), Lithol. Miner. Resour., 2016, no. 6, pp. 425–438.

  9. Bristow, C.M., The genesis of the China clays of South-West England – A multistage story, in Kaolin Genesis and Utilization. Spec. Publ., Murray, H.H., Bundy, W., Harvey, C., Eds., Clay Miner. Soc., 1993, vol. 1, pp. 171–203.

  10. Chamley, H., Clay Sedimentology, Berlin: Springer, 1989.

    Book  Google Scholar 

  11. Christidis, G.E., Industrial minerals: significance and important characteristics, EMU Notes in Mineralogy, 2010, vol. 9, no. 1, pp. 1–12.

    Google Scholar 

  12. Crowley, J.K. and Vergo, N., Near-infrared reflectance spectra of mixtures of kaolin-group minerals: use in clay mineral studies, Clay Clay Miner., 1988, vol. 36, no. 4, pp. 310–316.

    Article  Google Scholar 

  13. Drits, V.A. and Sakharov, B.A., Rentgenostrukturnyi analiz smeshanosloinykh mineralov (The X-Ray Structural Analysis of Mixed-Layer Minerals), Moscow: Nauka, 1976.

  14. Drits, V.A. and Tchoubar, C., X-ray Diffraction by Disordered Lamellar Structures, Berlin: Springer, 1990.

    Book  Google Scholar 

  15. Fang, Q., Hong, H., Zhao, L., et al., Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy: A review, J. Spectr., 2018, vol. 2018, pp. 1–14.

    Article  Google Scholar 

  16. Frolov, V.T., Metodika laboratornykh issledovanii shlifov (Method for the Laboratory Analysis of Thin Sections), Moscow: MGU, 1964.

  17. Fursikova, I.V., Stratigraphy of Neogene deposits in the northern Oka–Don plain, Meshchera lowland, and adjacent areas, Extended Abstract of the PhD (Geol.–Miner.) Dissertation, Moscow: MGU, 1984.

  18. Gorbachev, B.F., Vasyanov, G.P., and Krasnikova, E.V., Kaolin in the Orsk district of the Trans-Ural region - Mineral resource base for the formation of a special ore mining facility in the Volga region federal district, Georesursy, 2015, no. 63, pp. 2532.

  19. Hanson, R.F., Genesis of refractory clay near Guanajuato, Mexico, Clay Clay Miner., 1966, no. 14(1), pp. 259267.

  20. Hinckley, D.N., Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina, Clay Clay Miner., 1962, vol. 11, no. 1, pp. 229–235.

    Article  Google Scholar 

  21. Iosifova, Yu.I., Paleogene and Neogenea system, in Geologiya SSSR (Geology of the Soviet Union), Sidorenko, A.V., Ed., Moscow: Nedra, 1971, vol. 4.

  22. Kaplan, H.H. and Milliken, R.E., Reflectance spectroscopy for organic detection and quantification in clay-bearing samples: Effects of albedo, clay type, and water content, Clay Clay Miner., 2016, vol. 2, no. 64, pp. 167–184.

    Article  Google Scholar 

  23. Karas, S.A., Kremenetskii, A.A., Orlov, S.Yu., et al., A new geoindustrial type of hydrogenic rhenium deposits, Razved. Okhr. Nedr, 2017, no. 8, pp. 2026.

  24. Keller, W.D., The origin of Missouri fire clays, Clay Clay Miner., 1953, vol. 2, no. 1, pp. 7–46.

    Article  Google Scholar 

  25. Kholmovoi, G.V., Development of the Pliocene and Early Pleistocene hydrological network in the upper Don River basin, Byull. Komiss. Izuch. Chetvert. Perioda, 1974, no. 42, pp. 8998.

  26. Korchuganova, N.I., Sokolov, S.A., and Zagubnyi, D.G., Geological structure and modern structure of the Oka–Don trough, Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 2012, no. 1, pp. 310.

  27. Korostelov, V.A., Refractory clays in the Shulepovo deposit, Novye Ogneupory, 2006, no. 1, pp. 189.

  28. Korshunov, D.M. and Boguslavskii, M.A., Mineral composition and morphological features of kaolinite in ceramic clays of the Shulepovo deposit (Ryazan region, Central European Russia), Lithol. Miner. Resour., 2021, no. 2, pp. 189–195.

  29. Kotel’nikov, D.D. and Konyukhov, A.I., Glinistye mineraly osadochnykh porod (Clay Minerals in Sedimentary Rocks), Moscow: Nedra, 1986.

  30. Kotel’nikov, D.D. and Zinchuk, N.N., Comparative analysis of the evolution of clay minerals under conditions of the humid and arid lithogenesis, Geol. Geofiz., 2008, no. 10, pp. 965–977.

  31. Kuz’min, A.N., Kirikov, V.P., Luk’yanova, N.V., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). Seriya Tsentral’no-Evropeiskaya. List N-37 (State Geological Map of the Russian Federation. Scale 1 : 1 000 000. Ser. Central European Part. Sheet N-37), Moscow: Kartogra. Fabr. VSEGEI, 2015.

  32. Madeira, J., Bédidi, A., Cervelle, B., et al., Spectral (MIR) determination of kaolinite and gibbsite contents in lateritic soils, Comptes Rendus-Acad. Sci., 1995, vol. 321, no. 2, pp. 119–127.

    Google Scholar 

  33. Makhlina, M.Kh., Vdovenko, M.V., Alekseev, A.S., et al., Nizhnii karbon Moskovskoi sineklizy i Voronezhskoi anteklizy (Lower Carboniferous in the Moscow Syneclise and Voronezh Anteclise), Moscow: Nauka, 1993.

  34. Maslennikov, V.P., Regularities in the composition and structure alteration of the coal-bearing sequence in the southern limb of the Moscow region basin, Extended Abstract of the PhD (Geol.–Miner.) Dissertation, Moscow, 1981.

  35. Mathian, M., Hebert, B., Baron, F., et al., Identifying the phyllosilicate minerals of hypogene ore deposits in lateritic saprolites using the near-IR spectroscopy second derivative methodology, J. Geochem. Explor., 2018, vol. 186, pp. 298–314.

    Article  Google Scholar 

  36. Menges, F., Spectragryph–Optical Spectroscopy Software. Version 1.2.14. 2020. (accessed 19/08/2021).

  37. Millot, G., Géologie des argiles: altérations, sédimentologie, géochimie, Paris: Masson, 1964. Translated under the title Geologiya glin (vyvetrivanie, sedimentatsiysa, geokhimiya, Moscow: Nedra, 1968.

  38. Ndlovu, B., Farrokhpay, S., Forbes, E., et al., Characterisation of kaolinite colloidal and flow behaviour using its crystallinity measurement, Powder Technol., 2015, vol. 269, pp. 505–512.

  39. Novikov, I.A., Batskie kory vyvetrivaniya Moskovskoi oblasti (The Bathian weathering crusts in the Moscow region), Moscow: Real Taim, 2011.

  40. Olfer’ev, A.G., New data on the geological structure of Lower Cretaceous rocks in the Moscow district, in Geologiya i poleznye iskopaemye tsentral’nykh raionov Vostochno-Evropeiskoi platformy (Geology and Mineral Resources in central regions of the East European Platform), Moscow: Nauka, 1986.

  41. Oliveira, M., Furtado, S., Formoso, M.L.L., et al., Coexistence of halloysite and kaolinite: A study on the genesis of kaolin clays of Campo Alegre Basin, Santa Catarina State, Brazil, Anais Acad. Brasil. Ciencias, 2007, no. 79(4), pp. 665681.

  42. Oyebanjo, O.M., Ekosse, G.E., and Odiyo, J.O., Mineral constituents and kaolinite crystallinity of the <2 mm fraction of Cretaceous-Paleogene/Neogene kaolins from eastern Dahomey and Niger delta basins, Nigeria, Open Geosci., 2018, vol. 10, no. 1, pp. 157–166.

    Article  Google Scholar 

  43. Plancon, A. and Zakharie, C., An expert system for the structural characterization of kaolinites, Clay Miner., 1990, no. 25, pp. 249–260.

  44. Razumova, V.N., Lateritic and kaolinitic weathering crusts of basic rocks, in Trudy GIN AN SSSR, Moscow: Nauka, 1967, no. 174.

  45. Reineck, G.E. and Singh, I.B., Depositional Sedimentary Environments, Berlin: Blackwell Sci. Publ., 1978. Translated under the title Obstanovki terrigennogo osadkonakopleniya, Moscow: Nedra, 1981.

  46. Remezova, E.A. and Kuz’manenko, I.L., Models of kaolin distribution in the Glukhovetsk deposit (Ukraine) based on qualitative indicators, Georesursy, 2013, no. 55, pp. 1618.

  47. Rodionova, G.D., Umnova, V.T., Kononova, L.I., et al., Devon Voronezhskoi anteklizy i Moskovskoi sineklizy (Devonian in the Voronezh Anteclise and Moscow Syneclise), Moscow: Tsentr. Region. Geol. Tsentr, 1995.

  48. Sakharov, B.A., Drits, V.A., McCarty, D.K., and Walker, G.M., Modeling powder X-ray diffraction patterns of the clay minerals society kaolinite standards: Kga-1, Kga-1b, and Kga-2, Clay Clay Miner., 2016, vol. 3, no. 64, pp. 314–333.

    Article  Google Scholar 

  49. Santos, A.E. and Rossetti, D., Origin of the Rio Capim kaolin based on optical (petrographic and SEM) data, Am. Earth Sci., 2008, vol. 26, no. 3, pp. 329–341.

    Article  Google Scholar 

  50. Savko, A.D., Manukovskii, S.V., Krainov, A.V., et al., Devonian secondary kaolinites in the Voronezh Anteclise, Vestn. VGU, 2018, no. 1, pp. 2028.

  51. Shekhovtsova, A.M., Geologicheskoe izuchenie (poiski i otsenka) ogneupornykh glin na uchastke nedr “Shulepovskoe mestorozhdenie (Linza № 2)" v Miloslavskom raione Ryazanskoi oblasti (Geological Study (Prospecting and Appraisal) of Refractory Clays in the Shulepovo Deposit (Lens 2) Area, Miloslavskoe District, Ryazan Region), St. Petersburg, 2019.

  52. Sidorova, E.Yu., Sitdikova, L.M., Izotov, V.G., and Khasanova, N.M., Kaolinite in the weathering crust in the basement of the North Tatar arch (Volga–Ural region), in XI Vserossiiskaya molodezhnaya nauchnaya konferentsiya “Mineraly: stroenie, svoistva, metody issledovaniya” (XI All-Russia Youth Scientific Conference “Minerals: Structure, Properties, and Investigation Methods” Yekaterinburg, 2020, pp. 270–271.

  53. Silva, M.S.E., Lages, A.S., and Santana, G.P., Physical and chemical study of lattice kaolinites and their interaction with orthophosphate, Anais Acad. Brasil. Ciencias, 2017, vol. 3, no. 89, pp. 1391–1401.

    Article  Google Scholar 

  54. Strakhov, N.M., Osnovy teorii litogeneza (Fundamentals of the Theory of Lithogenesis), Moscow: AN SSSR, 1960, vol. 2.

  55. Urusbieva, F.I. and Breslav, S.L., Gosudarstvennaya geologicheskaya karta SSSR. Masshtab 1 : 200 000. Seriya Moskovskaya. List N-37-XXII. Ob"yasnitel’naya zapiska (State Geological Map of the Soviet Union. Scale 1 : 200 000. Ser. Moscow Region. Sheet N-37-XXII. Explanatory Note), Moscow: Nedra, 1963.

  56. Vassoevich, V.L., Logvinenko, N.V., and Marchenko, V.I., Spravochnik po litologii (Handbook on Lithology), Moscow: Nedra, 1983.

    Google Scholar 

  57. Vikentyev, I.V. and Kailachakov, P.E., Unique rhenium deposit in the Carboniferous coal-bearing sands of the Russian Plate: Communication 1. Geological structure, Lithol. Miner. Resour., 2020, no. 3, pp. 177–191.

  58. Viti, C., Lupieri, M., and Reginelli, M., Weathering sequence of rhyolitic minerals: The kaolin deposit of Torniella Italy, N. Jb. Mineral., 2007, no. 183(2), pp. 203–213.

  59. Volkova, T.P., Agarkova, N.G., Donchenko, E.V., et al., Genetic features of refractory clay deposits in the Donetsk region, Trudy RANIMI, 2017, no. 3(18), pp. 137–153.

  60. Wilson, I.R., Kaolin and halloysite deposits of China, Clay Miner., 2004, vol. 39, no. 1, pp. 1–15.

    Article  Google Scholar 

  61. Wilson, I.R., Santos de S., Santos H. de S.P., Kaolin and halloysite deposits of Brazil, Clay Miner., 2006, vol. 41, no. 3, pp. 697–716.

    Article  Google Scholar 

  62. Yashunskii, Yu.V., Novikova, S.A., Golubev, V.K., et al., Authigenic sanidine as a mineral indicator of gravitation-brine catagenesis in Carboniferous rocks in the southern limb of the Moscow syneclise, Lithol. Miner. Resour., 2020, no. 3, pp. 192–205.

Download references


This work was accomplished under the State Task of Geological Institute, Russian Academy of Sciences, project no. 0135-2019-0073.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to D. M. Korshunov or M. A. Boguslavskiy.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korshunov, D.M., Boguslavskiy, M.A. Mineralogical–Geochemical Features, Genesis, and Age of Refractory Clays in the Shulepovo Deposit (Ryazan Region, Central European Russia). Lithol Miner Resour 57, 78–94 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • authigenic kaolinite
  • halloysite
  • XRD
  • clay formation
  • alluvial channel and oxbow facies