Skip to main content
Log in

Facies Structure and Quantitative Parameters of Pleistocene Sedimentation on the Deep-Sea Floor of the Southern Pacific Ocean and in the Scotia Sea

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

Based on the data from long sediment cores retrieved by R/V Eltanin (United States) during the 1950s–1960s, Neo- and Eopleistocene lithofacies maps of the southern Pacific Ocean (scale 1 : 20 000 000) and Scotia Sea (scale 1 : 10 000 000) were compiled for the first time. For the Scotia Sea, schemes of isopachites are shown on the respective lithofacies maps. All maps are processed with the volumetric method proposed by A.B. Ronov. The results revealed that accumulation rates of the terrigenous and siliceous sediments increased during the Pleistocene in both sedimentation basins due to neotectonic activity in the Antarctic Peninsula, which enhanced fluxes of not only terrigenous matter but also nutrients delivered by melted waters to the photosynthesis zone via vertical circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Emel’yanov, E.M., Lisitsyn, A.P., and Il’in, A.V., Tipy Donnykh osadkov Atlanticheskogo okeana (Types of Bottom Sediments in the Atlantic Ocean), Kaliningrad: Pravda, 1975, vol. 579.

  2. General Bathymetric Chart of the Oceans (GEBCO), 2004.

  3. Gersonde, R., Crosta, X., Abelmann, A., and Armand, L., Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum - a circum-Antarctic view based on siliceous microfossil records, Quat. Sci. Rev., 2005, vol. 24, pp. 869–896.

    Article  Google Scholar 

  4. Goodell, H.G. and Watkins, N.D., The paleomagnetic stratigraphy of the Southern Ocean: 20° west to 160° east, Deep-Sea Res. Oceanogr. Abstracts, 1968, vol. 15, no. 1, pp. 89–112.

    Article  Google Scholar 

  5. Gradstein, F.M., Ogg, J.G., Smith, A.G., et al., A Geologic Time Scale 2004, Cambridge: Cambridge Univ. Press, 2004.

    Book  Google Scholar 

  6. Hiscock, M.R., Marra, J., Smith, Jr.W.O., et al., Primary productivity and its regulation in the pacific sector of the Southern Ocean, Deep-Sea Res. II, 2003, vol. 50, pp. 533–538.

    Article  Google Scholar 

  7. Hollister, Ch.D., Craddock, C., Tucholke, B.E., et al., Init.Repts. DSDP, 1976, vol. 35.

    Google Scholar 

  8. Ingólfsson Ó., Quaternary glacial and climate history of Antarctica, in Quaternary Glaciations—Extent and Chronology, Ehlers, J. and Gibbard, P.L., Eds., Amsterdam: Elsevier, 2004, part 3, pp. 3–43.

  9. Khain, V.E., Tektonika kontinentov i okeanov (god 2000) (Tectonics of Continents and Oceans—Year 2000), Moscow: Nauchn. Mir, 2001.

  10. Koshlyakov, M.N. and Tarakanov, R.Yu., Water masses of the Pacific Antarctic, Oceanology, 1999, vol. 39, no. 1, pp. 1–11.

    Google Scholar 

  11. Koshlyakov, M.N., Tarakanov, R.Yu., and Savchenko, D.S., Energetic interactions of swirls and whirls in the Antarctic Circumpolar Current in surface layer of the Southern Ocean, Okeanolog.Issled., 2019, vol. 47, no. 3, pp. 39–57.

    Google Scholar 

  12. Levitan, M.A., Biogenic silica as source of material for the formation of cherts in sediments of the Pacific Ocean, Extended Abstract of PhD (Geol.-Miner.) Dissertation, Moscow: MGU, 1975.

  13. Levitan, M.A., Balukhovskii, A.N., Antonova, T.A., and Gel’vi, T.N., Quantitative parameters of Pleistocene pelagic sedimentation in the Pacific Ocean, Geochem. Int., 2013, no. 5, pp. 345–352.

  14. Levitan, M.A., Antonova, T.A., and Gel’vi, T.N., Facies structure and quantitative parameters of Pleistocene pelagic sedimentation in the Indian Ocean, Geochem. Int., 2014, no. 4, pp. 316–324.

  15. Levitan, M.A. and Leichenkov, G.L., Cenozoic glaciation of Antarctica and sedimentation in the Southern Ocean, Lithol. Miner. Resour., 2014, no. 2, pp. 117–137.

  16. Levitan, M.A. and Gel’vi, T.N., Quantitative parameters of Pleistocene pelagic sedimentation in the Atlantic Ocean, Geochem. Int., 2016, no. 12, pp. 1049–1060.

  17. Levitan, M.A., Gel’vi, T.N., Syromyatnikov, K.V., and Chekan, K.M., Facies structure and quantitative parameters of Pleistocene sediments of the Bering Sea, Geochem. Int., 2018a, no. 4, pp. 304–317.

  18. Levitan, M.A., Gel’vi, T.N., and Domaratskaya, L.G., Facies structure and quantitative parameters of Pleistocene sediments at the submarine continental margin of Wilkes Land and Ross Sea (Antarctica), Vestn. IG Komi NTs URO RAN, 2018b, no. 10, pp. 17–22.

  19. Levitan, M.A., Comparative analysis of Pleistocene sediments of pelagic area and submarine continental margins of the Pacific Ocean, Geochem. Int., 2020, vol. 58, no. 1, pp. 49–60.

    Article  Google Scholar 

  20. Lisiecki, L.E. and Raymo, M.E., A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 2005, vol. 20, PA1003. https://doi.org/10.1029/2004PA001071

    Article  Google Scholar 

  21. Lisitsyn, A.P., Main regularities in the distribution of recent siliceous sediments and their relation to climatic zonation, in Geokhimiya kremnezema (Geochemistry of Silica), Moscow: Nauka, 1966, pp. 90–191.

  22. Lyle, M., Gibbs, S., Moore, T.C., and Rea, D.K., Late Oligocene initiation of the Antarctic Circumpolar Current: Evidence from the South Pacific, Geology, 2007, vol. 35, no. 8, pp. 691–694.

    Article  Google Scholar 

  23. McCoy, F.W., Swint, T.R., and Piper, D.Z., Types of Bottom sediments, in Mezhdunarodnyi geologo-geofizicheskii atlas Tikhogo okeana (International Geological–Geophysical Atlas of the Pacific Ocean), Udintsev, G.B., Ed., Moscow: St. Petersburg, 2003, pp. 114–115.

  24. Naish, T.R., The variability of Pliocene Antarctic ice sheets and implications for global sea-level, Abstr. IPY Oslo Sci. Conf., Oslo, 2010, LM9.2-1.4.

  25. Orsi, A.H., Whitworth, T., and Nowlin, W.D., Jr., On the meridional extent and fronts of the Antarctic Circumpolar Current, Deep-Sea Res. I, 1995, vol. 42, no. 5, pp. 641–673.

    Article  Google Scholar 

  26. Pospelov, E.M., Geograficheskie nazvaniya Mira. Toponimicheskii slovar (Geographic Names of the World: Toponymic Dictionary), Moscow: Russk. Slovari, 2002.

  27. Ronov, A.B., History of sedimentation and oscillatory movements in the European part of the Soviet Union: Evidence from the volumetric method data, Tr. Geofiz. Inst. AN SSSR, 1949, no. 3, p. 136.

  28. Udintsev, G.B. and Shenke, G.V., Ocherki geodinamiki Zapadnoi Antarktiki (Essays on the Geodynamics of Western Antarctica), Moscow: GEOS, 2004.

  29. Volkovinskii, V.V., Determinations of primary productivity in the Scotia Sea, Okeanologiya, 1969, vol. 66, pp. 160–167.

    Google Scholar 

Download references

Funding

This work was accomplished under the Russian State Task (project no. 01372019-0007) and supported by the Russian Academy of Sciences (program no. 20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Levitan.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levitan, M.A., Gelvi, T.N. & Domaratskaya, L.G. Facies Structure and Quantitative Parameters of Pleistocene Sedimentation on the Deep-Sea Floor of the Southern Pacific Ocean and in the Scotia Sea. Lithol Miner Resour 55, 327–337 (2020). https://doi.org/10.1134/S0024490220040045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490220040045

Keywords:

Navigation