Advertisement

Lithology and Mineral Resources

, Volume 53, Issue 2, pp 110–129 | Cite as

Mineralogical–Geochemical Features of Ice-Rafted Sediments in Some Arctic Regions

  • A. V. Maslov
  • V. P. Shevchenko
  • V. A. Bobrov
  • E. V. Belogub
  • V. B. Ershova
  • O. S. Vereshchagin
  • P. V. Khvorov
Article
  • 17 Downloads

Abstract

The quantitative mineral composition estimated using the Rietveld method and some geochemical features are considered for bulk samples of the ice-rafted sediments (IRS) from some Arctic regions. Layer silicates in the studied samples vary from ~20 to ~50%. They are dominated by micas and their decomposition products (illite and likely some part of smectites) at significant contents of kaolinite, chlorite, and transformation/decomposition products of the latter. A significant content of illite and muscovite among layer silicates in most IRS samples suggests that sources of the sedimentary material were mainly mineralogically similar to modern bottom sediments of the East Siberian and Chukchi seas, as well as presumably sediments of the eastern Laptev Sea. It is suggested that a significant kaolinite fraction in IRS samples from the North Pole area can be caused by the influx of ice-rafted fine-grained sedimentary material from the Beaufort or Chukchi seas, where kaolinite is supplied from the Bering Sea. Positions of IRS data points in the (La/Yb)N–Eu/Eu*, (La/Yb)N–(Eu/Sm)N, and (La/Yb)N–Th diagrams show that the studied samples contain variable proportions of erosion products of both mafic and felsic magmatic rocks and/or sufficiently mature sedimentary rocks. This conclusion is confirmed by localization of IRS data points in the Th/Co–La, Si/Al–Ce, and Si/Al–Sr diagrams.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, J.T. and Eberl, D.D., Quantitative mineralogy of surface sediments on the Iceland shelf, and application to down-core studies of Holocene ice-rafted sediments, J. Sediment. Res., 2007, vol. 77, pp. 469–479.CrossRefGoogle Scholar
  2. Andrews, J.T. and Eberl, D.D., Determination of sediment provenance by unmixing the mineralogy of source-area sediments: the “SedUnMix” program, Mar. Geol., 2012, vol. 291, pp. 24–33.CrossRefGoogle Scholar
  3. Andrews, J.T. and Hardardottir, J., A comparison of Holocene sediment-and paleomagnetic characteristics from the margins of Iceland and East Greenland, Jokull, 2009, vol. 59, pp. 51–66.Google Scholar
  4. Arctic '98: The Expedition ARK-XIV/1a of RV “Polarstern” in 1998, Jokat, W., Ed., in Berichte Polarforsch., 1999, vol. 308.Google Scholar
  5. Asadulin, En.E., Miroshnikov, A.Yu., and Velichkin, V.I., Geochemical Signature of Bottom Sediments in the Mixing Zones of Ob and Yenisei Waters with Kara Sea Water, Geochem. Int. 2013, no. 12, pp. 1005–1018.CrossRefGoogle Scholar
  6. Asadulin, En.E., Miroshnikov, A.Yu., Usacheva, A.A., and Velichkin, V.I., Geochemical recognition of terrigenous material from the Ob and Yenisei rivers in bottom sediments of the eastern part of the Kara Sea, Dokl. Earth. Sci., 2015, vol. 461, no. 2, pp. 270–272.CrossRefGoogle Scholar
  7. Bayon, G., Toucanne, S., Skonieczny, C., et al., Rare earth elements and neodymium isotopes in world river sediments revisited, Geochim. Cosmochim. Acta, 2015, vol. 170, pp. 17–38.CrossRefGoogle Scholar
  8. Bobrov, V.A., Granina, L.Z., Kolmogorov, Yu.P., and Melgunov, M.S., Minor elements in aeolian and riverine suspended particles in Baikal region, Nucl. Instr. Methods Phys. Res., 2001, vol. 470, pp. 431–436.CrossRefGoogle Scholar
  9. Bobrov, V.A., Khodzher, T.V., Granina, L.Z., et al., Rare earth elements in the eolian and riverine suspended material in the Lake Baikal region, Geol. Geofiz., 2001, vol. 42, pp. 267–277.Google Scholar
  10. Colony, R.L., Rigor, I., and Runciman-Moore, K., A summary of observed ice motion and analyzed atmospheric pressure in the Arctic basin, 1979–1990, in Appl. Physics Lab., Seattle: Univ. Wash., 1991, pp. 13–91.Google Scholar
  11. Condie, K.C., Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales, Chem. Geol., 1993, vol. 104, pp. 1–37.CrossRefGoogle Scholar
  12. Dalrymple, R.W. and Maass, O.C., Clay mineralogy of Late Cenozoic sediments in the CESAR cores, Alpha Ridge, central Arctic Ocean, Can. J. Earth Sci., 1987, vol. 24, pp. 1562–1569.Google Scholar
  13. Darby, D.A., Kaolinite and other clay minerals in Arctic Ocean sediments, J. Sediment. Petrol., 1975, vol. 45, pp. 272–279.Google Scholar
  14. Darby, D.A., Sources of sediment found in sea ice from the western Arctic Ocean, new insights into processes of entrainment and drift patterns, J. Geophys. Res.: Oceans, 2003, vol. 108, no. C8.Google Scholar
  15. Darby, D.A., Naidu, A.S., Mowatt, T.C., and Jones, G., Sediment composition and sedimentary processes in the Arctic Ocean, in The Arctic Seas—Climatology, Oceanogaphy, Geology and Biology, Herman, Y., Ed., New York: Van Nostrand Reinhold Co., 1989, pp. 657–720.Google Scholar
  16. Darby, D.A., Myers, W.B., Jakobsson, M., and Rigor, I., Modern dirty sea ice characteristics and sources: the role of anchor ice, J. Geophys. Res., 2011, vol. 116. C09008. https://doi 10.1029/2010JC006675Google Scholar
  17. Dethleff, D. and Kuhlmann, G., Fram Strait sea-ice sediment provinces based on silt and clay compositions identify Siberian Kara and Laptev seas as main source areas, Polar Res., 2010, vol. 29, pp. 265–282.Google Scholar
  18. Dethleff, D., Nurnberg, D., Reimnitz, E., et al., East Siberian Arctic Region Expedition'92: the Laptev Sea—its significance for Arctic Sea-ice formation and transpolar sediment flux, Ber. Polarforsch., 1993, vol. 120, pp. 3–44.Google Scholar
  19. Dubinin, A.V., Geokhimiya redkozemel’nykh elementov v okeane (Geochemistry of Rare Earth Elements in the Ocean), Moscow: Nauka, 2006.Google Scholar
  20. Eicken, H., Reimnitz, E., Alexandrov, V., et al., Sea-ice processes in the Laptev Sea and their importance for sediment export, Contin. Shelf Res., 1997, vol. 17, pp. 205–233.CrossRefGoogle Scholar
  21. Elverhoi, A., Pfirman, S., Solheim, A., and Larssen, B.B., Glaciomarine sedimentation in epicontinental seas exemplified by the northern Barents Sea, Mar. Geol., 1989, vol. 85, pp. 225–250.CrossRefGoogle Scholar
  22. Emeis, K., Particulate suspended matter in major world rivers-II: results on the rivers Indus, Waikato, Nile, St. Lawrence, Yangtze, Parana, Orinoco, Caroni and Mackenzie, Mitt. Geol.-Palaont. Inst., Univ. Hamburg, 1985, no. 58, pp. 593–617.Google Scholar
  23. Farmer, G.L., Licht, K., Swope, R.J., and Andrews, J.T., Isotopic constraints on the provenance of fine-grained sediment in LGM tills from the Ross Embayment, Antarctica, Earth Planet. Sci. Lett., 2006, vol. 249, pp. 90–107.CrossRefGoogle Scholar
  24. Gaillardet, J., Dupre, B., and Allegre, C.J., Geochemistry of large river suspended sediments: silicate weathering or recycling tracer?, Geochim. Cosmochim. Acta, 1999, vol. 63, nos. 23/24, pp. 4037–4052.CrossRefGoogle Scholar
  25. Gel’man, E.M. and Starobina, I.Z., Fotometricheskie metody opredeleniya porodoobrazuyushchikh elementov v rudakh, gornykh porodakh i mineralakh (Photometric Methods for the Determination of Major Elements in Ores, Rocks, and Minerals), Moscow: GEOKhI AN SSSR, 1976.Google Scholar
  26. Gorbunova, Z.N., Clay-size minerals in the Kara Sea sediments, Oceanology, 1997, vol. 37, no. 5, pp. 709–712.Google Scholar
  27. Gordeev, V.V., Rachold, V., and Vlasova, I.E., Geochemical behaviour of major and trace elements in suspended particulate material of the Irtysh River, the main tributary of the Ob River, Siberia, Appl. Geochem., 2004, vol. 19, pp. 593–610.CrossRefGoogle Scholar
  28. Grousset, F.E., Cortijo, E., Huon, S., et al., Zooming in on Heinrich layers, Paleoceanography, 2001, vol. 16, pp. 240–259.CrossRefGoogle Scholar
  29. Hemming, S.R., Vorren, T.O., and Kleman, J., Provinciality of ice rafting in the North Atlantic: Application of 40Ar/39Ar dating of individual ice rafted hornblende grains, Quat. Int., 2002, vol. 95–96, pp. 75–85.CrossRefGoogle Scholar
  30. Herman, Y., The Arctic Seas–Climatology, Oceanography, Geology, and Biology, New York: Van Nostrand Reinhold, 1989.Google Scholar
  31. Kalinenko, V.V., Shelekhova, E.S., and Wahsner, M., Clay minerals in the surface sediments of the East Siberian and Laptev Sea, in Surface-Sediment Composition and Sedimentary Processes in the Central Arctic Ocean and along the Eurasian Continental Margin, Stein, R., Ivanov, G., Levitan, M., and Fahl, K., Eds., Rep. Polar Res. 1996, vol. 212, pp. 43–50.Google Scholar
  32. Kassens, H. and Thiede, J., Climatological significance of Arctic Sea ice at present and in the past, in Russian-German Cooperation in the Siberian shelf seas: geo-system Laptev-Sea, Kassens, H., Eds., Ber. Polarforsch, 1994, vol. 144, pp. 81–85.Google Scholar
  33. Khim, B.K., Two modes of clay-mineral dispersal pathways on the continental shelves of the East Siberian Sea and western Chukchi Sea, Geosci. J., 2003, vol. 7, pp. 253–262.CrossRefGoogle Scholar
  34. Kolatschek, J., Eicken, H., Alexandrov, V.Yu., and Kreyscher, M., The sea ice cover of the Arctic Ocean and the Eurasian marginal seas: a brief overview of present day patterns and variability, in Surface-Sediment Composition and Sedimentary Processes in the Central Arctic Ocean and along the Eurasian Continental Margin, Stein, R., Ivanov, G.I., Levitan, M.A., and Fahl, K., Eds., Ber. Polarforsch, 1996, vol. 212, pp. 2–19.Google Scholar
  35. Konta, J., Mineralogy and chemical maturity of suspended matter in major rivers sampled under the SCOPE/UNEP project, Mitt. Geol.-Palaont. Inst., Univ. Hamburg, 1985, no. 58, pp. 569–592.Google Scholar
  36. Kontorovich, A.E., Forms of the migration of elements in rivers of the humid zone (based on materials from West Siberia and other regions), in Geokhimiya osadochnykh porod i rud (Geochemistry of Sedimentary Rocks and Ores), Moscow: Nauka, 1968, pp. 88–101.Google Scholar
  37. Lein, A.Yu., Makkaveev, P.N., Savvichev, A.S., et al., Transformation of suspended particulate matter into sediment in the Kara Sea in September of 2011, Oceanology, 2013, vol. 53, no. 5, pp. 570–606.CrossRefGoogle Scholar
  38. Levitan, M.A., Lavrushin, Yu.A., and Stain, R., Ocherki istorii sedimentatsii v Severnom Ledovitom okeane i moryakh Subarktiki v techenie poslednikh 130 tys. let (History of Sedimentation in the Arctic Ocean and Subarctic Seas in the Last 130 ka), Moscow: GEOS, 2007.Google Scholar
  39. Lisitzin, A.P., Ledovaya sedimentatsiya v Mirovom okeane (Ice Sedimentation in the World Ocean), Moscow: Nauka, 1994.Google Scholar
  40. Lisitzin, A.P., Sea-Ice and Iceberg Sedimentation in the Ocean: Recent and Past, Berlin: Springer, 2002.CrossRefGoogle Scholar
  41. Lisitzin, A.P., A new type of sedimentogenesis in the Arctic (marine ice): New approaches to the study of processes, Geol. Geofiz., 2010, vol. 51, no. 1, pp. 18–60.Google Scholar
  42. Lisitzin, A.P. and Shevchenko, V.P., Glaciomarine sedimentation, in Encyclopedia of Marine Geosciences, Harff, J., Meschede, M., Petersen, S., and Thiede, J., Eds., Dordrecht: Springer, 2016, pp. 288–294.CrossRefGoogle Scholar
  43. Lisitzin, A.P., Gurvich, E.G., Lukashin, V.N., et al., Geokhimiya elementov-gidrolizatov (Geochemistry of Hydrolyzate Elements), Moscow: Nauka, 1980.Google Scholar
  44. Logvinenko, N.V. and Ogorodnikov, V.I., Recent bottom sediments on the Chukchi Sea shelf, Okeanologiya, 1980, vol. 20, no. 4, pp. 681–687.Google Scholar
  45. Martin, J.M. and Meybeck, M., Chemical composition of river-borne particulates, Mar. Chem., 1979, vol. 7, no. 2, pp. 193–206.Google Scholar
  46. McManus, D.A., Venkatarathnam, K., Hopkins, D.M., and Nelson, H.C., Yukon River sediment on the northernmost Bering Sea shelf, J. Sediment. Petrol., 1974, vol. 44, pp. 1052–1060.Google Scholar
  47. Moros, M., McManus, J., Rasmussen, T., et al., Quartz content and the quartz-to-plagioclase ratio determined by X-ray diffraction: proxies for ice rafting in the northern North Atlantic?, Earth Planet. Sci. Lett., 2004, vol. 218, pp. 389–401.CrossRefGoogle Scholar
  48. Morozov, N.P., Baturin, G.N., Gordeev, V.V., and Gurvich, E.G., The composition of suspended material and sediments at estuaries of the northern Dvina, Mezen, Pechora, and Ob rivers, Gidrokhim. Mater., 1974, vol. 60, pp. 60–73.Google Scholar
  49. Naidu, A.S. and Mowatt, T.C., Sources and dispersal patterns of clay minerals in surface sediments from the continental shelf areas off Alaska, GSA Bull., 1983, vol. 94, pp. 841–854.CrossRefGoogle Scholar
  50. Naugler, F.P., Recent sediments of the East Siberian Sea, M.S. Thesis, Univ. Wash. DC, 1967.Google Scholar
  51. Nürnberg, D., Wollenburg, I., Dethleff, D., et al., Sediments in Arctic Sea ice: Implications for entrainment, transport and release, Mar. Geol., 1994, vol. 119, pp. 185–214.CrossRefGoogle Scholar
  52. Nürnberg, D., Levitan, M.A., Pavlidis, J.A., and Shelekhova, E.S., Distribution of clay minerals in surface sediments from the eastern Barents and south-western Kara seas, Geol. Rundsch, 1995, vol. 84, pp. 665–682.CrossRefGoogle Scholar
  53. Pfirman, S., Lange, M.A., Wollenburg, I., and Schlosser, P., Sea ice characteristics and the role of sediment inclusions in deep-sea deposition: Arctic-Antarctic comparisons, in Geological History of the Polar Oceans: Arctic versus Antarctic, Bleil, U. and Thiede, J., Eds., Dordrecht: Kluwer Acad. Publ., 1990, pp. 187–211.CrossRefGoogle Scholar
  54. Pfirman, S.L., Eicken, H., Bauch, D., and Weeks, W.F., The potential transport of pollutants by Arctic Sea ice, Sci. Tot. Envir., 1995, vol. 159, pp. 129–146.CrossRefGoogle Scholar
  55. Pfirman, S.L., Colony, R., Nürnberg, D., et al., Reconstructing the origin and trajectory of drifting Arctic Sea ice, J. Geophys. Res., 1997, vol. 102, pp. 12575–12586.CrossRefGoogle Scholar
  56. Pirrung, M., Fütterer, D., Grobe, H., et al., Magnetic susceptibility and ice-rafted debris in surface sediments of the Nordic Seas: Implications for Isotope Stage 3 oscillations, Geo-Mar. Lett., 2002, vol. 22, pp. 1–11.CrossRefGoogle Scholar
  57. Rachold, V., Major, trace and rare earth element geochemistry of suspended particulate material of East Siberian rivers draining to the Arctic Ocean, in Land-Ocean Systems in the Siberian Arctic: Dynamics and History, Berlin: Springer, 1999, pp. 1999–222.Google Scholar
  58. Rachold, V., Alabyan, A., Hubberten, H.-W., et al., Sediment transport to the Laptev Sea-hydrology and geochemistry of the Lena River, Polar Res., 1996, vol. 15, no. 2, pp. 183–196.Google Scholar
  59. Reimnitz, E., Dethleff, D., and Nurnberg, D., Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea, Mar. Geol., 1994, vol. 119, pp. 215–225.CrossRefGoogle Scholar
  60. Rentgenografiya osnovnykh tipov porodoobrazuyushchikh mineralov (X-ray Diffraction Analysis of the Major Types of Rock-Forming Minerals), Leningrad: Nedra, 1983, p. 360.Google Scholar
  61. Savenko, V.S., Khimicheskii sostav vzveshennykh nanosov rek Mira (The Chemical Composition of Suspended Material in Rivers of the World), Moscow: GEOS, 2006.Google Scholar
  62. Savenko, V.S., Pokrovskii, O.S., Dyupre, B., and Baturin, G.N., Chemical composition of suspended material in large rivers of Russia and adjacent countries, Dokl. Earth Sci., 2004, vol. 398, no. 1, pp. 938–942.Google Scholar
  63. Scientific Cruise Report of the Arctic Expedition ARK-XX/3 of RV “Polarstern” in 2004: Fram Strait, Yermak Plateau and East Greenland Continental Margin, Stein, R., Ed., Berichte Polar Meeresforsch., 2005, vol. 517.Google Scholar
  64. Serova, V.V. and Gorbunova, Z.N., Mineral composition of soils, aerosols, suspended matter, and bottom sediments of the Lena River estuary and the Laptev Sea, Oceanology, 1997, vol. 37, no. 1, pp. 121–125.Google Scholar
  65. Shevchenko, V.P., Lisitsyn, A.P., Polyakova, E.I., et al., Distribution and composition of sedimentary material in the snow cover of the Arctic drift ice (Fram Strait), Dokl. Earth Sci., 2002, vol. 383, no. 3, pp. 278–281.Google Scholar
  66. Shevchenko, V.P., Maslov, A.V., Lisitzin, A.P., et al., Elemental composition of the sedimentary material in drifting ice of the Arctic, in Geografiya polyarnykh regionov. Ser, voprosy geografii (Geography of Polar Regions: Ser. Issues of Geography), Kotlyakov, V.M., Ed., Moscow: Dom Kodeks, 2016, pp. 390–413.Google Scholar
  67. Shevchenko, V.P., Maslov, A.V., Lisitzin, A.P., et al., Systematics of Cr, Co, and REE in the sedimentary material of drifting ices in the northern Beaufort Gyre, Litosfera, 2017a, no. 3, pp. 59–70.CrossRefGoogle Scholar
  68. Shevchenko, V.P., Maslov, A.V., and Stein, R., Distribution of some rare and trace elements in ice-rafted sediments in the Yermak Plateau area, Arctic Ocean, Oceanology, 2017b, vol. 57, no. 6, pp. 855–863.CrossRefGoogle Scholar
  69. Silverberg, N., Sedimentology of the surface sediments of the East Siberian and Laptev seas, Ph.D. Thesis, Univ. Wash., DC, 1972.Google Scholar
  70. Stein, R., Grobe, H., and Wahsner, M., Organic carbon, carbonate, and clay mineral distributions in eastern central Arctic Ocean surface sediments, Mar. Geol., 1994, vol. 119, pp. 269–285.CrossRefGoogle Scholar
  71. Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Composition and Evolution, Oxford: Blackwell 1985.Google Scholar
  72. Translated under the title Kontinental’naya kora, ee sostav i evolyutsiya, Moscow: Mir, 1988.Google Scholar
  73. Verplanck, E.P., Farmer, G.L., Andrews, J., et al., Provenance of Quaternary glacial and glaciomarine sediments along the southeast Greenland margin, Earth Planet. Sci. Lett., 2009, vol. 286, pp. 52–62.CrossRefGoogle Scholar
  74. Viscosi-Shirley, C., Siberian-Arctic shelf surface-sediments: Sources, transport pathways and processes, and diagenetic alteration, PhD Thesis, Oregon State Univ., 2001.Google Scholar
  75. Viscosi-Shirley, C., Pisias, N., and Mammone, K., Sediment source strength, transport pathways and accumulation patterns on the Siberian-Arctic’s Chukchi and Laptev shelves, Cont. Shelf Res., 2003, vol. 23, pp. 1201–1225.CrossRefGoogle Scholar
  76. Votyakov, S.L., Kiseleva, D.V., Shagalov, E.S., et al., Multielement analysis of geological samples by the ICP-MS method using ELAN 9000, in Ezhegodnik-2005 (Yearbook-2005), Yekaterinburg: IGG UrO RAN, 2006, pp. 425–430.Google Scholar
  77. Wahsner, M., Muller, C., Stein, R., et al., Clay-mineral distribution in surface sediments of the Eurasian Arctic Ocean and continental margin as indicator for source areas and transport pathways–a synthesis, Boreas, 1999, vol. 28, pp. 215–233.CrossRefGoogle Scholar
  78. Wollenburg, I., Sediment transport by Arctic Sea ice: the recent load of lithogenic and biogenic material, Ber. Polarforsch, 1993, vol. 127, pp. 93–159.Google Scholar
  79. Zakharov, V.F., Morskie l’dy v klimaticheskoi sisteme (Marine Ice in the Climate System), St. Petersburg: Gidrometeoizdat, 1996.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. V. Maslov
    • 1
  • V. P. Shevchenko
    • 2
  • V. A. Bobrov
    • 3
  • E. V. Belogub
    • 4
  • V. B. Ershova
    • 5
  • O. S. Vereshchagin
    • 5
  • P. V. Khvorov
    • 4
  1. 1.Zavaritskii Institute of Geology and Geochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  3. 3.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Institute of Mineralogy, Ural Branch, Russian Academy of SciencesIlmeny ReserveMiass, Chelyabinsk obl.Russia
  5. 5.Institute of Earth SciencesSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations