Lithology and Mineral Resources

, Volume 53, Issue 2, pp 159–169 | Cite as

Biogenic Microstructures in Stromatolites of the Baikal–Patom Highland: Results of Complex Study



Precambrian stromatolites were studied with a complex approach including two complementary methods. The biogenic origin of ultramicrostructures examined with SEM was supported by the traditional optical microscopy. The paper addresses columnar-stratiform stromatolites of the Vendian Chencha Formation in the Ura Uplift (Baikal–Patom Highland, Central Siberia) and fossilized remains of coccoidal and filamentous microorganisms therein: cyanobacteria Eoentophysalis, hormogonian cyanobacteria Siphonophycus and, probably, Eomicrocoleus. The unraveled community of stromatolite builders includes the major organisms commonly observed in the Precambrian microbiota. Stromatolites of the Chencha Formation contained not only cyanobacteria, but also remains of eukaryotic microorganisms, including likely testate amoebae and acanthomorphic acritarchs. It is shown that the complex approach rules out incorrect determination of biota and significantly enhances concepts of the origin and formation of stromatolites, as well as the participation of microorganisms in their formation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chumakov, N.M., Stratigraphy and tectonics of the southwestern Vilyui depression, in Tektonika SSSR (Tectonics of the Soviet Union), Moscow: AN SSSR, 1959, vol. 4, pp. 345–460.Google Scholar
  2. Chumakov, N.M., Late Proterozoic African glacial era, Stratigr. Geol. Correlation, 2011, vol. 19, no. 1, pp. 1–20.CrossRefGoogle Scholar
  3. Chumakov, N.M., Pokrovskii, B.G., and Melezhik, V.A., Geological history of the Late Precambrian Patom Supergroup (Central Siberia), Dokl. Earth Sci., 2007, vol. 413, no. 3, pp. 343–346.CrossRefGoogle Scholar
  4. Chumakov, N.M., Semikhatov, M.A., and Sergeev, V.N., Vendian reference section of southern Middle Siberia, Stratigr. Geol. Correlation, 2013, vol. 21, no. 4, pp. 359–382.CrossRefGoogle Scholar
  5. Dol’nik, T.A., Stromatolity opornykh razrezov dokembriya okrainy Sayano-Baikal’skoi gornoi oblasti (spravochnoe rukovodstvo) (Stromatolites in Precambrian Reference Sections at the Sayan–Baikal Orogenic Region Margin: Reference Book), Irkutsk: Nedra, 1982.Google Scholar
  6. Dol’nik, T.A., Stromatolity i mikrofitolity yuga Sibirskoi platformy (Stromatolites and Microphytoliths in the South Siberian Platform), Novosibirsk: SO RAN, 2000.Google Scholar
  7. Faizullin, M.Sh., New data on Baikalian microfossils in the Patom Uplift, Geol. Geofiz., 1998, vol. 39, no. 3, pp. 328–337.Google Scholar
  8. Golubkova, E.Yu., Raevskaya, E.G., and Kuznetsov, A.B., Lower Vendian microfossil assemblages of East Siberia: Significance for solving regional stratigraphic problems, Stratigr. Geol. Correlation, 2010, vol. 18, no. 4, pp. 353–375.CrossRefGoogle Scholar
  9. Grey, K., Ediacaran palynology of Australia, Mem. Ass. Austr. Palaeont., 2005, no. 31, pp. 1–439.Google Scholar
  10. Khomentovsky, V.V., Postnikov, A.A., Karlova, G.A., et al., Vendian in the Baikal–Patom Uplift, Siberia, Geol. Geofiz., 2004, vol. 45, pp. 465–484.Google Scholar
  11. Kochnev, B.B. and Karlova, G.A., New data on biostratigraphy of the Vendian Nemakit–Daldynian Stage in the southern Siberian Platform, Stratigr. Geol. Correlation, 2010, vol. 18, no. 5, pp. 492–504.CrossRefGoogle Scholar
  12. Kolosov, P.N., Stratigrafiya verkhnego dokembriya yuga Yakutii (Upper Precambrian Stratigraphy in southern Yakutia), Novosibirsk: Nauka, 1975.Google Scholar
  13. Komar, Vl.A., Stromatolity verkhnedokembriiskikh otlozhenii severa Sibirskoi platformy i ikh stratigraficheskoe znachenie (Stromatolites in Upper Precambrian Rocks of the northern Siberian Platform and Their Stratigraphic Significance), Moscow: Nauka, 1966.Google Scholar
  14. Krylov, I.N., Stromatolity rifeya i fanerozoya SSSR (Riphean and Phanerozoic Stromatolites in the Soviet Union), Moscow: Nauka, 1975.Google Scholar
  15. Le Guerroue, E., Allen, P.A., and Cozzi, A., Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: the Neoproterozoic Shuram Formation (Nafun Group, Oman), Precambrian Res., 2006, vol. 144, pp. 68–92.CrossRefGoogle Scholar
  16. Leonov, M.V. and Rud’ko, S.V., Finding of the Ediacaran–Vendian fossils in the Far Taiga deposits, Patom Highlands, Stratigr. Geol. Correlation, 2012, vol. 20, no. 5, pp. 497–500.CrossRefGoogle Scholar
  17. Litvinova, T.V., New Data on the structure and composition of stromatolite buildups (northern Anabar region), Lithol. Miner. Resour., 2009, no. 4, pp. 389–398.CrossRefGoogle Scholar
  18. Litvinova, T.V., Ultramicrostructures of the stromatolite reef in the northern Anabar region and their origin, Lithol. Miner. Resour., 2014, no. 5, pp. 416–426.CrossRefGoogle Scholar
  19. Litvinova, T.V., Biogenic-abiogenic interactions in stromatolitic geosystems and their mineralization, in Abiogenic Interactions in Natural and Anthropogenic Systems, Springer, 2016, part 6, pp. 50–66.Google Scholar
  20. Liu, P., Xiao, S., Yin, C., et al., Ediacaran acanthomorphic acritarchs and other microfossils from cherts nodules of the Upper Doushantuo Formation in the Gangtze Gorges area, south China, Paleontol. Mem., 2014, vol. 72, pp. 1–139.Google Scholar
  21. Lo, S.C., Microbial fossils from the Lower Yudoma Suite, Earliest Phanerozoic, eastern Siberia, Precambrian Res., 1980, vol. 13, pp. 109–166.CrossRefGoogle Scholar
  22. Meffre, S., Large, R.R., Scott, R., et al., Age and pyrite Pbisotopic composition of the giant Sukhoi Log sedimentshosted gold deposits, Russia, Geochim. Cosmochim. Acta, 2008, vol. 72, no. 9, pp. 697–715.Google Scholar
  23. Melezhik, V.A., Pokrovsky, B.G., Fallick, A.E., et al., Constraints on 87Sr/86Sr of Late Ediacaran seawater: insight from Siberian high-Sr limestones, J. Geol. Soc. London, 2009, vol. 166, pp. 183–191.CrossRefGoogle Scholar
  24. Moczydlowska, M. and Nagovitsin, K., Ediacaran radiation of organic-walled microbiota recorded in the Ura Formation, Patom Uplift, East Siberia, Precambrian Res., 2012, vol. 198/199, pp. 1–24.CrossRefGoogle Scholar
  25. Nagovitsin, K.E., Faizullin, M.Sh., and Yakshin, M.S., New forms of Baikalian acanthomorphic acritarchs in the Patom Uplift (Ura Formation, East Siberia), Novosti Paleontol., Stratigr., 2004, vol. 45, no. 6-7, pp. 7–19.Google Scholar
  26. Pelechaty, S.M., Integrated chronostratigraphy of the Vendian System of Siberia: implication for a global stratigraphy, J.Geol.Soc. London, 1998, vol. 155, pp. 957–973.CrossRefGoogle Scholar
  27. Pokrovskii, B.G., Melezhik, V.A., and Bujakaite, M.I., Carbon, oxygen, strontium, and sulfur isotopic compositions in Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 1. Results, isotope stratigraphy, and dating problems, Lithol. Miner. Resour., 2006, no. 5, pp. 450–475.Google Scholar
  28. Schopf, J.W. and Kudryavtsev, A.B., Three-dimensional Raman imagery of Precambrian microscopic organisms, Geobiology, 2005, vol. 3, pp. 1–12.CrossRefGoogle Scholar
  29. Schopf, J.W. and Kudryavtsev, A.B., Confocal laser scanning microscopy and Raman imagery of ancient microscopic fossils, Precambrian Res., 2009, vol. 173, pp. 39–49.CrossRefGoogle Scholar
  30. Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., et al., Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils, Astrobiology, 2005, vol. 5, pp. 333–371.CrossRefGoogle Scholar
  31. Schopf, J.W., Tripathi, A., and Kudryavtsev, A.B., Threedimensional confocal optical microscopy of Precambrian microscopic organisms, Astrobiology, 2006, vol. 6, pp. 1–16.CrossRefGoogle Scholar
  32. Schopf, J.W., Kudryavtsev, A.B., and Sergeev, V.N., Confocal laser scanning microscopy and Raman imagery of the Late Neoproterozoic Chichkan microbiota of South Kazakhstan, J. Paleontol., 2010, vol. 84, pp. 402–416.CrossRefGoogle Scholar
  33. Semikhatov, M.A., Stromatolites in the Precambrian stratigraphy: Analysis 1984, Izv. Akad. Nauk SSSR, Ser. Geol., 1985, no. 4, pp. 3–21.Google Scholar
  34. Semikhatov, M.A. and Raaben, M.E., Dynamics of the global diversity of Proterozoic stromatolites. Article 1. North Eurasia, China, and India, Stratigr. Geol. Correlation, 1994, vol. 2, no. 6, pp. 10–32.Google Scholar
  35. Semikhatov, M.A. and Raaben, M.E., Dynamics of the global diversity of Proterozoic stromatolites. Article 2: Africa, Australia, North America, and general synthesis, Stratigr. Geol. Correlation, 1996, vol. 4, no. 1, pp. 24–50.Google Scholar
  36. Semikhatov, M.A. and Serebryakov, S.N., Sibirskii gipostratotip rifeya (The Riphean Hypostratotype in Siberia), Moscow: Nauka, 1983.Google Scholar
  37. Semikhatov, M.A., Kuznetsov, A.B., Podkovyrov, V.N., et al., The Yudoma Group of stratotype area: C-isotope chemostratigraphic correlations and Yudomian–Vendian relation, Stratigr. Geol. Correlation, 2004, vol. 12, no. 5, pp. 435–459.Google Scholar
  38. Serebryakov, S.N., Osobennosti formirovaniya i razmeshcheniya rifeiskikh stromatolitov Sibiri (Peculiarities of the Formation and Distribution of Riphean stromatolites in Siberia), Moscow: Nauka, 1975.Google Scholar
  39. Sergeev, V.N., Silicified microfossils from the Vendian Yudoma Group, Stratigr. Geol. Correlation, 2002, vol. 10, no. 6, pp. 547–564.Google Scholar
  40. Sergeev, V.N., Okremnennye mikrofossilii dokembriya: priroda, klassifikatsiya i biostratigraficheskoe znachenie (Precambrian Silicified Microfossils: Nature, Classification, and Biostratigraphic Significance), Moscow: GEOS, 2006.Google Scholar
  41. Sergeev, V.N., Knoll, A.H., and Vorob’eva, N.G., Ediacaran microfossils from the Ura Formation, Baikal–Patom Uplift, Siberia: taxonomy and biostratigraphic significance, J. Paleontol., 2011, vol. 85, no. 5, pp. 987–1011.Google Scholar
  42. Shibina, D.T., Kushmar, I.A., and Klyarovskaya, A.V., Formation conditions of the Riphean–Lower Cambrian sandy and clayey rocks: Implication for estimating the petroleum potential of the Patom trough, Neftegaz. Geol. Teor. Prakt., 2011, vol. 6, no. 2, pp. 1–17.Google Scholar
  43. Sokolov, B.S., Ocherki stanovleniya venda (Essays on the Evolution of Vendian), Moscow: KMK Ltd, 1997.Google Scholar
  44. Sokolov, B.S., Precambrian paleontology and acrochrons of the biosphere evolution: On the theory of the expanding biosphere, Stratigr. Geol. Correlation, 2012, vol. 20, no. 2, pp. 115–124.CrossRefGoogle Scholar
  45. Sovetov, J.K., Vendian foreland basin of the Siberian cratonic margin: Paleopangean accretionary phases, Russ. J. Earth Sci., 2002, vol. 4, pp. 363–387.CrossRefGoogle Scholar
  46. Stratigrafiya neftenosnykh basseinov Sibiri. Rifei i vend Sibirskoi platformy i ee skladchatogo obramleniya (Stratigraphy of Petroliferous Basins in Siberia, Riphean and Vendian in the Siberian Platform, and Its Orogenic Framing), Kontorovich, A.E, Ed., Novosibirsk: Geo, 2005.Google Scholar
  47. Stromatolites, Walter, M.R., Ed., Amsterdam: Elsevier, 1976.Google Scholar
  48. Vorob’eva, N.G., Sergeev, V.N., and Chumakov, N.M., New finds of Early Vendian microfossils in the Ura Formation: Revision of the Patom Complex age, Middle Siberia, Dokl. Earth Sci., 2008, vol. 419, no. 6, pp. 411–416.CrossRefGoogle Scholar
  49. Walter, M.R., Veevers, J.J., Calver, C.R., et al., Dating the 840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models, Precambrian Res., 2000, vol. 100, pp. 371–433.CrossRefGoogle Scholar
  50. Xiao, S., Zhou, C., Liu, P., et al., Phosphatized acanthomorphic acritarchs and related microfossils from the Ediacaran Doushantuo Formation at Weng’an (South China) and their implications for biostratigraphic correlation, J. Paleontol., 2014, vol. 88, pp. 1–67.CrossRefGoogle Scholar
  51. Zhang, Q.R., Chu, X.L., and Feng, L.J., Neoproterozoic glacial records in the Yangtze region, China, in The Geological Record of Neoproterozoic Glaciations, Arnaud, E., Halverson, G.P., and Shields-Zhou, G., Eds., Mem. Soc. London, 2011, no. 36, pp. 357–366.Google Scholar
  52. Zhou, C. and Xiao, S., Ediacaran δ13C chemostratigraphy of South China, Chem. Geol., 2007, vol. 89, pp. 89–108.CrossRefGoogle Scholar
  53. Zhou, C., Xie, G., McFadden, K., et al., The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: causes and biostratigraphic significance, Geol. J., 2007, vol. 42, no. 2, pp. 229–262.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations