Skip to main content
Log in

Basal (basic) moraines: Problem of the identification and principles of new classification

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The existing concepts of moraine/till formation are discussed and the available factual data on this issue are analyzed. It is concluded that active glaciers from the transported mineral matter make up exclusively basal moraines on the river bed. The latter moraines, which are composed of material directly deposited from the glacier base on the substrate, represent glacial diamicts. It is believed that material in these deposits always acquire a semisolid-solid (“stiff”) state. We identified a new type of glacial deposits–“mitis” basal moraines, which include the recently defined low consolidated glacial diamicts. Consequently, basal moraines are divided into two facies associations: moraines with glaciodynamic structures (common “stiff” moraines) and “mitis” moraines (M-moraines). Deposits of these associations are formed in different thermal zones (areas) of the ice sheet bed. Moraines of the first facies association are formed in melt zones. Therefore, they are characterized by different lithologies and overconsolidation. The M-moraines formed on the thawed glacial bed are marked by massive structure and low (normal) consolidation. They are subdivided into the Barents Sea and Antarctic types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aario, R., Classification and terminology of morainic landforms in Finland, Boreas, 1977, vol. 6, pp. 87–100.

    Article  Google Scholar 

  • Adams, J.I., Tests on glacial till, Proc. 14th Can. Soil Mech. Conf., NRC Techn. Memor. no. 69, Ottawa, 1961, pp. 37–48.

    Google Scholar 

  • Aksenov, A.A., Dunaev, N.N., Ionin, A.S., et al., Arkticheskii shel’f Evrazii v pozdnechetvertichnoe vremya (The Arctic Shelf of Eurasia in the Late Quaternary), Moscow: Nauka, 1987.

    Google Scholar 

  • Alley, R.B., Water-pressure coupling of sliding and bed deformation: II. Velocity–depth profiles, J. Glaciol, 1989, vol. 35, pp. 119–129.

    Article  Google Scholar 

  • Alley, R.B., Blankenship, D.D., Rooney, S.T., and Bentley, C.R., Deformation of till beneath ice stream B, West Antarctica, Nature, 1986, vol. 322, pp. 57–59.

    Google Scholar 

  • Alley, R.B., Blankenship, D.D., Bentley, C.R., and Rooney, S.T., Till beneath ice stream B. Till deformation: evidence and implication, J. Geophys. Res., 1987, vol. 92.

    Google Scholar 

  • Anandakrishnan, S. and Alley, R., Stagnation of ice stream C, West Antarctica by water piracy, Geophys. Rev. Lett., 1997, vol. 24, pp. 265–268.

    Article  Google Scholar 

  • Anderson, J.B., Brake, C.F., and Mayers, N.C., Sedimentation on the Ross Sea continental shelf, Antarctica, Mar. Geol., 1984, vol. 57, pp. 295–333.

    Article  Google Scholar 

  • Andreicheva, L.N., Osnovnye moreny evropeiskogo severovostoka Rossii i ikh litostratigraficheskoe znachenie (The Main Moraines in the European Part of Northeast Russia and Their Lithostratigraphic Significance), St. Petersburg: Nauka, 1992.

    Google Scholar 

  • Andreicheva, L.N., Pleistotsen evropeiskogo Severo-Vostoka (Pelistocene in the European Mortheast), Yekaterinburg: UrO RAN, 2002.

    Google Scholar 

  • Andreicheva, L.N., Lithology of Upper–Middle Pleistocene tills in the Far Northeast of European Russia, Lith. Miner. Resour., 2012, no. 3, pp. 253–263.

    Article  Google Scholar 

  • Atre, S.R. and Bentley, C.R., Laterally varying basal conditions beneath Stream B and C, West Antarctica, J. Glaciol., 1993, vol. 39, pp. 507–514.

    Article  Google Scholar 

  • Batchelor, C.L., Dowdeswell, J.A., and Pietras, J.T., Seismic stratigraphy, sedimentary architecture and palaeo-glaciology of the Mackenzie Trough: evidence for two Quaternary ice advances and limited fan development on the western Canadian Beaufort Sea margin, Quat. Sci. Rev., 2013, vol. 65, pp. 73–87.

    Article  Google Scholar 

  • Bindschdler, R. and Choi, H., Increased water storage at ice-stream onset: a critical mechanism?, J. Glaciol., 2007, vol. 53, pp. 163–171.

    Article  Google Scholar 

  • Blankenship, D.D., Bentley, C.R., Rooney, S.T., and Alley, R.B., Till beneath ice stream B. Properties derived from seismic travel times, J. Geophys. Res., 1987, vol. 92.

    Google Scholar 

  • Bouchard, M., Subglacial landforms and deposits in central and northern Quebec, Canada, with emphasis on Rogen moraines, Sedim. Geol., 1989, vol. 62, pp. 293–308.

    Article  Google Scholar 

  • Boulton, G.S., The development of geotechnical properties in glacial tills, in Glacial Till, Legget, R.F., Ed., Ottawa, 1976, pp. 292–303.

    Google Scholar 

  • Boulton, G.S., On the deposition of subglacial and meltout tills at the margin of certain Svalbard glaciers, J. Glaciol., 1970, vol. 9, pp. 231–245.

    Article  Google Scholar 

  • Boulton, G.S., Till genesis and fabric in Svalbard, Spitsbergen, in Till, Goldthwait, R.P., Ed., Ohio: State Univ. Press, 1971, pp. 41–72.

    Google Scholar 

  • Boulton, G.S., The development of geotechnical properties in glacial tills, in Glacial till, Legget, R.F., Ed., Ottawa, 1976, pp. 292–303.

    Google Scholar 

  • Boulton, G.S. and Dent, D.L., The nature and rates of post-depositional changes on recently deposited till from south-east Iceland, Geogr. Annaler., 1974, vol. 56A, nos. 3/4, pp. 121–134.

    Article  Google Scholar 

  • Boulton, G.S. and Paul, M.A., The influence of genetic processes on some geotechnical properties of glacial tills, Quat. J. Engin. Geol., 1976, vol. 9, pp. 159–194.

    Article  Google Scholar 

  • Boulton, G.S., Dent, D.L., and Morris, E.M., Subglacial shearing and crushing, and the role of water pressures in till from south-east Iceland, Geogr. Annaler., 1974, vol. 56A, nos. 3/4, pp. 135–145.

    Article  Google Scholar 

  • Brodzikowski, K. and Van Loon, A.J., A systematic classification of glacial and periglacial environments, facies and deposits, Earth Sci. Rev., 1987, vol. 24, pp. 297–381.

    Article  Google Scholar 

  • Canals, M., Urgeles, R., and Calafat, A.M., Deep sea-floor evidence of past ice streams off the Antarctic Peninsula, Geology, 2000, vol. 28, pp. 31–34.

    Article  Google Scholar 

  • Canals, M., Casamor, J.L., Urgeles, R., et al., Seafloor evidence of a subglacial sedimentary system off northern Antarctic Peninsula, Geology, 2002, vol. 30, pp. 603–606.

    Article  Google Scholar 

  • Chumakov, N.M., Glaciations in the geological past, in Klimaty Zemli v geologicheskom proshlom (Earth’s Climate in the Geological Past), Moscow: Nauka, 1987, pp. 44–69.

    Google Scholar 

  • Clark, C.D., Large-scale ice-moulding: a discussion of genesis and glaciological significance, Sedim. Geol., 1994, vol. 91, pp. 253–268.

    Article  Google Scholar 

  • Dowdeswell, J.A., Ó Cofaigh C., Pudsey, C., Thickness and extent of the subglacial till layer beneath an Antarctic paleoice stream, Geology, 2004, vol. 32, pp. 13–16.

    Article  Google Scholar 

  • Dowdeswell, J.A., Ottesen, D., Rise, L., and Craig, J., Identification and preservation of landforms diagnostic of past ice-sheet activity on continental shelves from threedimensional seismic evidence, Geology, 2007, vol. 35, pp. 359–362.

    Article  Google Scholar 

  • Drake, L.D., Depositional fabrics in basal till reflect alignment during transportation, Ear. Surf. Proc., 1977, vol. 2, pp. 309–317.

    Article  Google Scholar 

  • Dreimanis, A., Till: Their origin and properties, in Glacial Till, Legget, R.F., Ed., Ottawa, 1976, pp. 11–49.

    Google Scholar 

  • Dreimanis, A., The problems of waterlain tills, in Moraines and Varves (Origin, Genesis, Classification), Schlüchter, Ch., Ed., Rotterdam: Balkema, 1979, pp. 167–177.

    Google Scholar 

  • Dreimanis, A., Till: Their genetic terminology and classification, in GeneticClassification of Glacigenic Deposits, Goldthwait, R.P. and Matsch, C.L., Eds., Rotterdam: Balkema, 1989, pp. 17–83.

    Google Scholar 

  • Dreimanis, A. and Schlüchter, C., Field criteria for recognition or till of tillite, Palaogeogr., Palaeoclim., Palaeoecol., 1985, vol. 51, pp. 7–14.

    Article  Google Scholar 

  • Drewry, D., Glacial Geological Processes, London: Edward Arnold, 1986.

    Google Scholar 

  • Dunaev, N.N., Levchenko, O.V., Merklin, L.R., and Pavlidis, Yu.A., The Novaya Zemlya region shelf in the Late Quaternary, Okeanologiya, 1995, vol. 35, no. 3, pp. 440–450.

    Google Scholar 

  • Easterbrook, D.J., Void ratio and bulk densities as means of identifying Pleistocene tills, Geol. Soc. Am. Bull., 1964, vol. 75, pp. 1–34.

    Article  Google Scholar 

  • Ehlers, J., Different till types in North Germany and their origin, Till and Related Deposits, Rotterdam: Balkema, 1983.

    Google Scholar 

  • Eklund, A. and Hart, J.K., Glaciotectonic deformation within a flute from the Isfallaglaciaren, Sweden, J. Quat. Sci., 1996, vol. 11, pp. 299–310.

    Article  Google Scholar 

  • Elverhøi, A., Glacigenic and associated marine sediments in the Weddell Sea, fjords of Spitsbergen and the Barents Sea: review, Mar. Geol., 1984, vol. 57, pp. 53–88.

    Article  Google Scholar 

  • Elverhøi, A., Nyland-Berg, M., Russwurm, L., and Solheim, A., Late Weichselian ice recession in the Central Barents Sea, in Geological History of Polar Ocean: Arctic versus Antarctic, Bleil, U., Thiede, J., Eds., Netherlands: Kluver Acad. Publ., 1990, pp. 289–307.

    Chapter  Google Scholar 

  • Engelhard, H., Humprey, N., Kamb, B., and Fahnestock, M., Physical conditions at the base of fast moving Antarctic ice stream, Science, 1990, vol. 248, pp. 57–59.

    Article  Google Scholar 

  • Epshtein, O.G., The Vast’yan Kon outcrop in the lower Pechora area: A thick end-moraine section at an active margin of the Novaya Zemlya ice sheet, Byull. Kom. Izuch. Chetvert. Perioda, 1990, no. 59, pp. 14–28.

    Google Scholar 

  • Epshtein, O.G., Late Pleistocene–Holocene sedimentation cycle on glacial shelves, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2012, vol. 87, no. 3, pp. 3–19.

    Google Scholar 

  • Epshtein, O.G. and Gataullin, V.N., Lithology and formation conditions of Quaternary sediments in the eastern (Novaya Zemlya region) part of the Barents Sea, Litol. Polezn. Iskop., 1993, no. 1, pp. 119–124.

    Google Scholar 

  • Epshtein, O.G., Lavrushin, Yu.A., Valpeter, A.P., et al., Quaternary sediments in the northeastern Barents Sea and adjacent paleoshelf, Dokl. Akad. Nauk SSSR, 1983, vol. 272, no. 1, pp. 180–183.

    Google Scholar 

  • Epshtein, O.G., Starovoitov, A.V., and Dlugach, A.G., The “soft moraine” in the Arctic and Antarctic: A new facies type of glacial sediments, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2010, vol. 85, no. 2, pp. 23–44.

    Google Scholar 

  • Epshtein, O.G., Dlugach, A.G., Starovoitov, A.V., and Romanyuk, B.F., Pleistotcene sediments of the eastern Barents Sea (Central Deep and Murmansk Bank): Communication 1. Occurrence conditions and main structural features, Lith. Miner. Resour., 2011a, no. 2, pp. 115–134.

    Article  Google Scholar 

  • Epshtein, O.G., Dlugach, A.G., Starovoitov, A.V., and Romanyuk, B.F., Pleistocene sediments in the eastern Barents Sea (Central Deep and Murmansk Bank): Communication 2. Lithology and formation conditions, Lith. Miner. Resour., 2011b, no. 3, pp. 249–281.

    Google Scholar 

  • Evans, D.J.A., Clark, C.D., and Rea, B.R., Landform and sediment imprints of fast glacier flow in the Southwest Laurentide Ice Sheet, J. Quat. Sci., 2008, vol. 23, pp. 249–272.

    Article  Google Scholar 

  • Evans, D.J.A., Ó Cofaigh, C., Dowdeswell, J.A., and Wadhams, P., Marine geophysical evidence for former expansion and flow of the Greenland ice sheet across the North-East Greenland continental shelf, J. Quat. Sci., 2009, vol. 24, pp. 279–293.

    Article  Google Scholar 

  • Evteev, S.A., Geologicheskaya deyatel’nost' lednikovogo pokrova Vostochnoi Antarktidy (Geological Activity of Ice Sheet in the East Antarctic), Moscow: Nauka, 1964.

    Google Scholar 

  • Flint, R., Ledniki i paleogeografiya pleistotsena (Pleistocene Glaciers and Paleogeography), Moscow: Inostran. Liter., 1963.

    Google Scholar 

  • Flint, R.F., Glacial and Quaternary Geology, New York: John Wiley & Sons, 1971.

    Google Scholar 

  • Frolov, A.V. and Korotkikh, I.V., Inzhenernaya geologiya (Engineering Geology), Moscow: Nedra, 1983.

    Google Scholar 

  • Gainanov, V.G., Polyak, L.V., Gataullin, V.N., and Zverev, A.S., Seismoacoustic sstudies of traces of sheet glaciation in the Kara Sea, Vestnik MGU, Ser. Geol., 2005, no. 1, pp. 38–44.

    Google Scholar 

  • Gataullin, A.N. and Polyak, L.V., Presence of glacial sediments in the Central Deep, Barents Sea, Dokl. Akad. Nauk SSSR, 1990, vol. 314, no. 6, pp. 1463–1467.

    Google Scholar 

  • Gataullin, V., Polyak, L., Epstein, O., and Romanyuk, B., Glacigenic deposits of the Central Deep: a key to the Late Quaternary evolution of the eastern Barents Sea, Boreas, 1993, vol. 22, pp. 47–58.

    Article  Google Scholar 

  • Genetic Classification of Glacigenic Deposits, Goldthwait, R.P. and Matsch, C.L., Eds., Rotterdam: Balkema, 1989.

  • Gibbard, P.L., The origin of stratified Catfish Creek till by basal melting, Boreas, 1980, vol. 9, pp. 71–85.

    Article  Google Scholar 

  • Glacial Till, Legget, R.F., Ed., Ottawa, 1976.

  • Goldshtein, M.N., Mekhanicheskie svoistva gruntov (Mechanical Properties of Soils), Moscow: Gos. Izd. Liter. Stroitel. Arkh., 1952.

    Google Scholar 

  • Goldthwait, R.P., Introduction to till, Today, in Till, Goldthwait, R.P., Ed., Ohio: State Univ. Press, 1971, pp. 3–26.

    Google Scholar 

  • Gray, J.T. and Lauriot, B., Dynamics of the late Wisconsin Ice Sheet in the Ungava Peninsula interpreted from geomorphological evidence, Arct. Alpin. Res., 1985, vol. 17, pp. 289–310.

    Article  Google Scholar 

  • Grunty. Klassifikatsiya. GOST 25100-82 (Soils. Classification: State Standard 25100-82), Moscow: Izd. Stand., 1982.

  • Hallet, B., Glacial abrasion and sliding: their dependence on the debris concentration in basal ice, Ann. Glaciol., 1981, vol. 2, pp. 23–28.

    Article  Google Scholar 

  • Hambrey, M.J., Glacial Eenvironment, London: UCL Press, 1994.

    Google Scholar 

  • Hambrey, M.J., Ehrmann, W.U., and Larsen, B., Cenozoic glacial record on the Prydz Bay continental shelf, East Antarctica, Proc. Ocean Drill. Progr., Sci. Res., Texas: College Station,, 1991, v. 119, pp. 77–132.

    Google Scholar 

  • Hanvey, P.M., Stratified flow deposits in a Late Pleistocene drumlin in Northwest Ireland, Sedim. Geol., 1989, vol. 62, pp. 211–221.

    Article  Google Scholar 

  • Harrison, P.W., A clay-till fabric: its character and origin, J. Geol., 1957, vol. 65, pp. 275–308.

    Article  Google Scholar 

  • Hätterstrand, C. and Kleman, J., Ribbed moraine formation, Quat. Sci. Rev., 1999, vol. 18, pp. 43–61.

    Article  Google Scholar 

  • Hätterstrand, C. and Götz, S., Näslund. O., Fabel, D., et al., Drumlin formation time: evidence from Northern and Central Sweden, Geogr. Ann., 2004, vol. 86 A, pp. 155–167.

    Article  Google Scholar 

  • Heroy, D.C. and Anderson, J.B., Ice-sheet extent of the Antarctic Peninsula region during the last glacial maximum (LGM)- insights from glacial geomorphology, Geol. Soc. Am. Bull., 2005, vol. 117, pp. 1497–1512.

    Article  Google Scholar 

  • Hiemstra, J.F., Kulessa, B., King, E.C., and Ntarlagiannis, D., The use of integrated sedimentological and geophysical methods in drumlin research- a case study of Pigeon Point, Clew Bay, Northwest Ireland, Earth Surf. Landforms, 2011, vol. 36, pp. 1860–1871.

    Article  Google Scholar 

  • Howat, I.M. and Domack, E.W., Reconstruction of western Ross Sea palaeo-ice-stream grounding zones from high-resolution stratigraphy, Boreas, 2003, vol. 32, pp. 56–75.

    Article  Google Scholar 

  • Hughes, T.J., Numerical reconstruction of paleo-ice sheets, in The Last Great Ice Sheets, Denton, G.H., Hughes, T.J., Eds., N. Y.: John Wiley & Sons, 1981, pp. 221–261.

    Google Scholar 

  • Hughes, T.J., Ice Sheets, Oxford Univ. Press, 1998.

    Google Scholar 

  • Iverson, N.R., Baker, R.W., and Hooyer, T.S., A ring-shear device for the study of till deformation: tests on tills with contrasting clay contents, Quat. Sci. Rev., 1997, vol. 16, pp. 1057–1066.

    Article  Google Scholar 

  • Josenhans, H.W. and Zevenhuizen, J., Dynamics of the Laurentide Ice Sheet in the Hudson Bay, Canada, Mar. Geol., 1990, vol. 92, pp. 1–26.

    Article  Google Scholar 

  • Josenhans, H.W., Zevenhuizen, J., and Klassen, R.A., The Quaternary geology of the Labrador Shelf, Can. J. Earth Sci., 1986, vol. 23, pp. 1190–1213.

    Article  Google Scholar 

  • Joughin, J.R., Tulaczuk, S., and Engelhard, H.F., Basal melt beneath Whillans Ice Stream and Ice Streams A and C, West Antarctica, Ann. Glaciol., 2003, vol. 36, pp. 257–262.

    Article  Google Scholar 

  • Joughin, J. and Tulaczuk, S., Macayeal, D.R., and Engelhard, H., Melting and freezing beneath the Ross ice stream, Antarctica, J. Glaciol., 2004, vol. 50, pp. 96–108.

    Article  Google Scholar 

  • Kaplyanskaya, F.A. and Tarnogradskii, V.D., Glyatsial’naya geologiya (Glacial Geology), St. Petersburg: Nauka, 1993.

    Google Scholar 

  • King, L.H., Till in the marine environment, J. Quat. Sci., 1993, vol. 8, pp. 347–358.

    Article  Google Scholar 

  • King, L.H. and Fader, G.B.J., Wisconsinan glaciation of the Atlantic continental shelf of southeast Canada, Geol. Surv. Can. Bull., 1986, p. 72.

    Google Scholar 

  • King, L.H., Rokoengen, K., Fader, G.B.J., and Gunleiksrud, T., Till-tongue stratigraphy, Geol. Soc. Am. Bull., 1991, vol. 103, pp. 637–659.

    Article  Google Scholar 

  • Klages, J.P., Kuhn, G., Hillebrand, C.-D., et al., First geomorphological record and glacial history of an inter-ice ridge on the West Antarctic continental shelf, Quat. Sci. Rev., 2013, vol. 61, pp. 47–61.

    Article  Google Scholar 

  • Knight, J., Morphological and morphometric analyses of drumlin bedforms in the Omagh Basin, North Central Ireland, Geogr. Ann., 1997, vol. 79 A, pp. 255–266.

    Article  Google Scholar 

  • Kostin, A.D., Geological structure, seismostratigraphy and formation conditions of Quaternary sediments in the Northeast Barents Sea, Extended Abstract of PhD (Geol.–Miner.) Dissertation, Murmansk: MMBI KNTs RAN, 2005.

    Google Scholar 

  • Kostin, D.A. and Tarasov, G.A., Formation conditions of Quaternary sediments on the southern shelf of the Franz Joseph Land Archipelago, in Ekologiya antropogena i sovremennosti: priroda i chelovek (Anthropogenic and Recent Ecology: Nature and Man), St. Petersburg: Gumanistika, 2004.

    Google Scholar 

  • Kristoffersen, Y., Milliman, J.D., and Ellis, J.P., Unconsolidated sediments and shallow structure of the northern Barents Sea, Norsk Polarinst. Skrifter, 1984, no. 180, pp. 25–39.

    Google Scholar 

  • Krüger, J., Structures and textures in till indicating subglacial deposition, Boreas, 1979, vol. 8, pp. 323–340.

    Article  Google Scholar 

  • Krüger, J. and Marcussen, I., Lodgement till and flow till: a discussion, Boreas, 1976, vol. 5, pp. 61–64.

    Article  Google Scholar 

  • Lavrushin, Yu.A., Stroenie i formirovanie osnovnykh moren materikovykh oledenenii (Structure and Formation of Main Moraines of Continental Glaciations), Moscow: Nauka, 1976.

    Google Scholar 

  • Lavrushin, Yu.A., Some general issues of the moraine sedimentogenesis, in Protsessy kontinental’nogo litogeneza (Processes of Continental Lithogenesis), Moscow: Nauka, 1980, pp. 123–135.

    Google Scholar 

  • Lavrushin, Yu.A. and Epshtein, O.G., Features of the glacial lithogenesis, Byull. Mosk. O-va Ispyt. Prir. Otd. Geol., 2000, vol. 75, no. 6, pp. 14–29.

    Google Scholar 

  • Lavrushin, Yu.A. and Epshtein, O.G., Pleistocene geological events in the northern East Europe and southern Barents Sea: Evidence from natural reference srctions, Byull. Kom. Izuch. Chetvert. Perioda, 2001, no. 64, pp. 35–60.

    Google Scholar 

  • Lawson, D.E., A sedimentological analysis of western margin of the Matanuska Glacier, Alaska, U.S. Army Cold Regions Res. Engin. Lab. Rep., 1979, p. 122.

    Google Scholar 

  • Lawson, D.E., Distinguishing characteristics of diamictons at the margin of the Matanuska Glacier, Alaska, Ann. Glaciol., 1981, vol. 2, pp. 78–84.

    Article  Google Scholar 

  • Lawson, D.E., Mobilization, movement and deposition of active subaerial sediment flow, Matanuska Glacier, Alaska, J. Geol., 1982, vol. 90, pp. 279–300.

    Article  Google Scholar 

  • Lawson, D.E., Glacigenic resedimentation: Classification concepts and application to mass-movement processes and deposits, in GeneticcCassification of Glacigenic Deposits, Goldthwait, R.P., Matsh, C.L., Eds., Rotterdam: Balkema, 1988, pp. 147–169.

    Google Scholar 

  • Leonov, M.G. and Epshtein, O.G., Borodulino glaciodislocations (Russia Platform) and their significance for understanding structure-forming mechanism, Geotectonics, 2002, no. 3, pp. 188–202.

    Google Scholar 

  • Licht, K.J., Dunbar, N.W., Andrews, J.T., and Jennings, A.E., Distinguishing subglacial till and glacial marine diamictons in the western Ross Sea, Antarctica: implication for a last glacial maximum grounding line, Geol. Soc. Am. Bull, 1999, vol. 111, pp. 91–103.

    Article  Google Scholar 

  • Lindën, M., Möller, P., and Adrielsson, L., Ribbed moraine formed by subglacial folding, thrust stacking and lee-side cavity infill, Boreas, 2008, vol. 37, pp. 102–131.

    Article  Google Scholar 

  • Lomtadze, V.D., Structural-mechanical properties of clayey rocks: Indicator of the degree of their lithification, Dokl. Akad. Nauk SSSR, 1957, vol. 113, no. 6, pp. 1344–1346.

    Google Scholar 

  • Lukas, S., A test of the englacial thrusting hypothesis of “hummocky” moraine formation: case studies from the northwest Highlands, Scotland, Boreas, 2005, vol. 34, pp. 287–307.

    Article  Google Scholar 

  • Lundqvist, J., Problems of the co-called Rogen moraine, Sverig. Geol. Undersok. Ser. C, NR 648. Arsbok 64, NR. 5, Stockholm, 1969.

    Google Scholar 

  • Lundqvist, J., Till in Sweden, Boreas, 1977, vol. 6, pp. 73–85.

    Article  Google Scholar 

  • Lundqvist, J., Moraine morphology, Geogr. Annal., 1981, vol. 63 A, pp. 127–138.

    Google Scholar 

  • Lundqvist, J., Glacigenic processes, deposits and landforms, in Genetic Classification of Glacigenic Deposits, Goldthwait, R.P., Matsh, C.L., Eds., Rotterdam: Balkema, 1989a, pp. 3–16.

    Google Scholar 

  • Lundqvist, J., Rogen (ribbed) moraine–identification and possible origin, Sedim. Geol., 1989b, pp. 281–292.

    Google Scholar 

  • Medvedev, V.S. and Nevesskii, E.N., Evolution of the White Sea in the late-postglacial time, in Problemy geologii shel’fa (Problem of the Geology of Shelf), Nevesskii, E.N, Ed., Moscow: Nauka, 1975.

    Google Scholar 

  • Mickelson, D.M., Acomb, L.J., and Edit, T.B., The origin of preconsolidated and normally consolidated tills, in Moraines and Varves (Origin, Genesis, Classification), Schlüchte, Ch., Ed., Rotterdam: Balkema, 1979, pp. 179–188.

    Google Scholar 

  • Moraines and Varves (Origin, Genesis, Classification), Schlüchter, Ch., Ed., Rotterdam: Balkema, 1979, pp. 179–188.

  • Moran, S.R., Glaciotectonic structures in drift, in Till, Goldthwait, R.P., Ed., Ohio: State Univ. Press, 1971, pp. 127–148.

    Google Scholar 

  • Mukhin, Yu.V., Protsessy uplotneniya glinistykh osadkov (Processes of the Consolidation of Clayey Sediments), Moscow: Nedra, 1965.

    Google Scholar 

  • Muller, E.H., Dewatering during lodgement till, in Till and Related Deposits, Evenson, E., Schlüchter, Ch. and Rabassa, J., Eds., Rotterdam: Balkema, 1983, pp. 13–18.

    Google Scholar 

  • Murdmaa, I., Ivanova, E., Duplessy, J.-C., et al., Facies system of the eastern Barents Sea since glaciation to present, Mar. Geol., 2006, vol. 230, pp. 275–303.

    Article  Google Scholar 

  • Noveishii slovar' inostrannykh slov i vyrazhenii (Advanced Dictionary of Foreign Words and Expressions), Minsk: Sovrem. Liter., 2007, p. 976.

  • Ó Cofaigh, C., Pudsey, C.J., Dowdeswell, J.A., and Morris, P., Evolution of subglacial bedform along a paleo-ice stream, Antarctic Peninsula continental shelf, Geophys. Rev. Lett., 2002, vol. 29, no. 1, pp. 41-1–41-4.

    Google Scholar 

  • Ó Cofaigh, C., Taylor, J., Dowdeswell, J.A., and Pudsey, C., Palaeo-ice streams, trough mouth fan and high-latitude continental slope sedimentation, Boreas, 2003, vol. 32, pp. 37–55.

    Article  Google Scholar 

  • Ó Cofaigh, C., Dowdeswell, J.A., Allen, C.S., et al., Flow dynamics and till genesis associated with a marine-based Antarctic palaeo-ice stream, Quat. Sci. Rev., 2005, vol. 24, pp. 709–740.

    Article  Google Scholar 

  • Ó Cofaigh, C., Dowdeswell, J.A., Evans, J., and Larter, R.D., Geological constrains on Antarctic palaeo-ice stream retreat, Earth Surf. Proc. Landforms, 2008, vol. 33, pp. 513–525.

    Article  Google Scholar 

  • Osnovnye moreny materikovykh oledenenii (Main Moraines of Continental Glaciations), Shantser, E.V. and Lavrushin, Yu.A., Eds., Moscow: GIN AN SSSR, 1978.

  • Oswald, G.K. and Robin, de Q., Lakes beneath the Antarctic ice sheet, Nature, 1973, vol. 245, pp. 251–254.

    Article  Google Scholar 

  • Ozhegov, S.I., Slovar’ russkogo yazyka (Dictionary of the Russian Language), Moscow: Russk. Yazyk, 1990.

    Google Scholar 

  • Parizek, B.R. and Alley, R.B., Sub-catchment melt and long-term stability of ice stream D, West Antarctica, Geophys. Rev. Lett., 2002, vol. 29, pp. 55–1.

    Google Scholar 

  • Pavlidis, Yu.A., Dunaev, N.N., and Shcherbakov, F.A., Urgent issues of Quaternary geology of the Barents Sea, in Sovremennye protsessy osadkonakopleniya na shel’fe Mirovogo okeana (Modern Processes of Sedimentation on the Shelf of the World Ocean), Aibulatov, N.A., Ed., Moscow: Nauka, 1990.

    Google Scholar 

  • Pavlidis, Yu.A. and Murdmaa, I.O., Ivanova A E., et al., Were ice sheets of Novaya Zemlya and Franz Josef Land connected 18 ka ago?, in Opyt sistemnykh okeanologicheskikh issledovanii v Arktike (Experience of Systematic Oceanographic Studies in the Arctic), Moscow: Nauch. Mir, 2001, pp. 453–467.

    Google Scholar 

  • Praeg, D.B., Maclean, B., Hardy, I.A., and Mudie, P.J., Quaternary geology of southeast Baffin Island continental shelf, Geol. Surv. Can. Pap., 1986, p. 38.

    Google Scholar 

  • Prest, V.K., Nomenclature of moraines and ice-flow features as applied to the glacial map of Canada, Geol. Surv. Can. Pap., 1968, p. 32.

    Google Scholar 

  • Raymond, C.F., Catania, G.A., Nereson, N., and van der Veen, C.J., Bed radar reflectivity across margin of Whillans Ice Stream, West Antarctica, and implication for margin processes, J. Glaciol., 2006, vol. 52, pp. 3–10.

    Article  Google Scholar 

  • Ridley, J.K., Cudlip, W., and Laxon, S.W., Identification of subglacial lakes using ERS-1 radar altimeter, J. Glaciol., 1993, vol. 39, pp. 625–643.

    Article  Google Scholar 

  • Rukhina, E.V., Moraine sediments and principles of their classification, in Materialy po genezisu i litologii chetvertichnykh otlozhenii (Materials Related to the Genesis and Lithology of Quaternary Sediments), Minsk: AN BSSR, 1961.

    Google Scholar 

  • Rukhina, E.V., Experience of the subdivision of moraines based on their lithological properties, in Osadochnye i vulkanogennye formatsii (Sedimentary and Volcanogenic Formations), Leningrad: Nedra, 1966, pp. 145–149.

    Google Scholar 

  • Rukhina, E.V., Litologiya lednikovykh otlozhenii (Lithology of Glacial Sediments), Leningrad: Nedra, 1973.

    Google Scholar 

  • Ruszczynśka-Szenaych, H., The origin of glacial rafts: detachment, transport, deposition, Boreas, 1987, vol. 16.

    Google Scholar 

  • Ruszczynśka-Szenaych, H., “Lodgement till” and “deformation till,” Quat. Sci. Rev., 2001, vol. 20, pp. 579–581.

    Article  Google Scholar 

  • Sættem, J. and Hamburg, M., The geological implications of the upper seismic unit, southeastern Barents Sea, Polar Res., 1987, vol. 5, pp. 299–301.

    Article  Google Scholar 

  • Scherer, R.P., Aldahal, A., Tulaczyk, S., et al., Pleistocene collapse of the West Antarctic Ice Sheet, Science, 1998, vol. 281, pp. 82–84.

    Article  Google Scholar 

  • Shalaeva, N.V and Starovoitov, A.V., Osnovy seismoakustiki na melkovodnykh akvatoriyakh (Fundamentals of Seismoacoustics in Shallow Seas), Moscow: MGU, 2010.

    Google Scholar 

  • Shantser, E.V., Ocherki ucheniya o geneticheskikh tipakh kontinental’nykh osadochnykh obrazovanii (Essays on the Science of Genetic Types of Continental Sedimentary Formations), Moscow: Nauka, 1966.

    Google Scholar 

  • Shantser, E.V., Some general issues in the science of genetic types of sediments, in Protsessy kontinental’nogo litogeneza (Processes of Continental Lithogenesis), Moscow: Nauka, 1980, pp. 5–27.

    Google Scholar 

  • Shaw, J., Drumlins and large-scale flutings related to glacier folds, Arctic Alp. Res., 1980, vol. 12, pp. 287–298.

    Article  Google Scholar 

  • Shaw, J., Todd, B.J., Brushett, D., et al., Late Wisconsinan glacial landsystems on Atlantic Canadian shelves: new evidence from multibeam and single-beam sonar data, Boreas, 2009, vol. 38, pp. 146–159.

    Article  Google Scholar 

  • Shipp, S., Anderson, J., and Domack, E., Late Pleistocene- Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 1–Geophysical results, Geol. Soc. Am. Bull., 1999, vol. 111, pp. 1486–1516.

    Article  Google Scholar 

  • Shumskii, P.A., Dinamicheskaya glyatsiologiya, Itogi nauki. Gidrologiya sushi. Glyatsiologiya (Dynamic Glaciology. Scientific Results: Hydrology of Land. Glaciology), Moscow: VINITI, 1969.

    Google Scholar 

  • Skempton, A.W., The consolidation of clay by gravitational compaction, Quat. J.Geol. Soc., London, 1970, part 3, pp. 373–411.

    Google Scholar 

  • Solheim, A. and Kristoffersen, Y., Sediments above the Upper Regional Unconformity: Thickness, Seismic Stratigraphy and Outline of Glacial History, Oslo: Norsk Polarinst., 1984, Skr. 179 B.

    Google Scholar 

  • Solheim, A. and Pfiman, S.L., Sea-floor morphology outside a grounded, surging glacier, Bräsvellbreen, Svalbard, Mar. Geol., 1985, vol. 65, pp. 127–143.

    Article  Google Scholar 

  • Solheim, A., Russwurm, L., Elverhoi, A., and Berg, M.N., Glacial geomorphic features in the northern Barents Sea: direct evidence for grounded ice and implications for the pattern of deglaciation and late glacial sedimentation, in Glacimarine Environments: Processes and Sediments (Geol. Soc. Spec. Publ.), Dowdeswell, J.A. and Scourse, J.D., Eds., 1990, no. 53, pp. 253–268.

    Google Scholar 

  • Starovoitov, A.V., The Maximum Late Pleistocene Glaciation on the eastern Barents Sea shelf, Dokl. Earth Sci., 1999, vol. 364, no. 1, pp. 29–32.

    Google Scholar 

  • Starovoitov, A.V., Seismoacoustic studies of glacial sediments on the eastern shelf of the Barents Sea, Razved. Okhr. Nedr, 2002, no. 1, pp. 27–31.

    Google Scholar 

  • Starovoitov, A.V., Kalinin, A.V., Spiridonov, M.A., et al., New data on the Late Cenozoic sediments in the southern Barents Sea, Dokl. Akad. Nauk SSSR, 1983, vol. 270, no. 5, pp. 1179–1181.

    Google Scholar 

  • Stokes, C.R., Lian, O.B., Tulaczuk, S., and Clark, C.D., Superimposition of ribbed moraines on a palaeo-ice-stream bed: implication for ice stream dynamics and shutdown, Earth Surf. Proc. Landforms, 2008, vol. 33, pp. 593–609.

    Article  Google Scholar 

  • Sugden, D.E., Reconstruction of the morphology, dynamics, and thermal characteristics of the Laurentide ice sheet at its maximum, Arc. Alp. Res., 1977, vol. 9, pp. 21–47.

    Article  Google Scholar 

  • Sugden, D.E., Glacial erosion by the Laurentide ice sheet, J. Glaciol., 1978, vol. 20, pp. 367–391.

    Article  Google Scholar 

  • Sutinen, R., Jakonen, M., Piekari, M., et al., Electricalsedimentary anisotropy of Rogen moraine, Lake Rogen area, Sweden, Sed. Geol., 2010, vol. 232, pp. 181–189.

    Google Scholar 

  • Till, Goldthwait, R.P., Ed., Ohio: State Univ. Press, 1971.

  • Todd, B.J. and Shaw, J., Laurentide Ice Sheet dynamics in the Bay of Fandy, Canada, revealed through multibeam sonar mapping of glacial landsystems, Quat. Sci. Rev., 2012, vol. 58, pp. 83–103.

    Article  Google Scholar 

  • Todd, B.J., Valentine, P.C., Longva, O., and Shaw, J., Glacial landforms on German Bank, Scotian Shelf: evidence for Late Wisconsinan ice-sheet dynamics and implication for the formation of De Geer moraines, Boreas, 2007, vol. 36, pp. 148–169.

    Article  Google Scholar 

  • Tsytovich, N.A., Mekhanika merzlykh gruntov (Mechanics of the Frozen Soil), Moscow: Vyssh. Shkola, 1973.

    Google Scholar 

  • Tulaczuk, S., Kamb, W.B., Scherer, R.P., and Engelhard, H.F., Sedimentary processes at the base of a West Antarctic ice stream: constrains from textural and compositional properties of subglacial debris, J. Sedim. Res., 1998, vol. 68, pp. 487–496.

    Article  Google Scholar 

  • Tulaczuk, S., Kamb, W.B., and Engelhard, H.F., Basal mechanics of ice Stream B, West Antarctica. 1. Till mechanics, J. Geophys. Res., 2000, vol. 105, no. 1, pp. 464–481.

    Google Scholar 

  • Tulaczuk, S., Kamb, W.B., and Engelhard, H.F., Estimate of effective stress beneath a modern West Antarctic ice stream from till preconsolidation and void ratio, Boreas, 2001, vol. 30, pp. 101–114.

    Article  Google Scholar 

  • Van der Meer, J.J.M., Menzies, J., and Rose, J., Subglacial till: the deforming glacier bed, Quat. Sci. Rev., 2003, vol. 22, pp. 1659–1685.

    Article  Google Scholar 

  • Virkkala, K., On the bed structure of till in eastern Finland, Suomi Geol. Tutkim. Bull., 1952, no. 157, pp. 97–109.

    Google Scholar 

  • Vorren, T.O., Hald, M., and Thomsen, E., Quaternary sediments and environments on the continental shelf off Northern Norway, Mar. Geol., 1984, vol. 57, pp. 229–257.

    Article  Google Scholar 

  • Vorren, T.O., Lebesbye, E., Andreassen, K., and Larsen, K-B., Glacigenic sediments on the passive continental margin as exemplified by Barents Sea, Mar. Geol., 1989, vol. 85, pp. 251–272.

    Article  Google Scholar 

  • Wellner, J.S., Lowe, A.L., Shipp, S.S., and Anderson, J.B., Distribution of glacial geomorphic features on the Antarctic continental shelf and correlation with substrate: implication for ice behavior, J. Glaciol., 2001, vol. 47, pp. 387–411.

    Article  Google Scholar 

  • Yilmaz, I., Evaluation of shear strength of clayey soils by using their liquidity index, Bull. Engin. Geol. Envir., 2000, vol. 59, pp. 227–229.

    Article  Google Scholar 

  • Zilliacus, H., Genesis of De Deer moraines in Finland, Sedim. Geol., 1989, vol. 62, pp. 309–317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Epshtein.

Additional information

Original Russian Text © O.G. Epshtein, 2017, published in Litologiya i Poleznye Iskopaemye, 2017, No. 2, pp. 145–168.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epshtein, O.G. Basal (basic) moraines: Problem of the identification and principles of new classification. Lithol Miner Resour 52, 125–146 (2017). https://doi.org/10.1134/S0024490217010023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490217010023

Navigation