Skip to main content
Log in

Molar tooth structures and origin of peloids in proterozoic carbonate platforms (Middle Riphean of the Turukhansk Uplift, Siberia)

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

Structures and textures of the peloidal wackestones, as well as size, shape, and composition of peloidal grains, from the Mesoproterozoic (Middle Riphean) Sukhaya Tunguska carbonate platform in the Turukhansk Uplift (Siberia) are considered. It is shown that these grains formed in the course of diagenesis were closely associated with the microsparitic replacement and the formation of molar tooth (MT) structures. Diagenetic transformations of rocks were related to the activity of anaerobic microbial communities inside the buried carbonate silt layers. The microbial activity during diagenesis was governed by the carbonate sediment composition and conservation mechanism of the high-molecular organic matter of primary producers therein, since this organic matter was the nutritious substrate for the primary anaerobe communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop, J.W. and Sumner, D.Y., Molar tooth structures of the Neoarchean Monteville Formation, Transvaal Supergroup, South Africa. I. Constraints on microcrystalline CaCO3 precipitation, Sedimentology, 2006, vol. 53, pp. 1049–1068.

    Article  Google Scholar 

  • Bishop, J.W., Sumner, D.Y., and Huerta, N.J., Molar tooth structures of the Eoarchean Monteville Formation, Transvaal Supergroup, South Africa. II. A wave-induced fluid flow model, Sedimentology, 2006, vol. 53, pp. 1069–1082.

    Article  Google Scholar 

  • Calderón, K., González-Martinez, A., Gómez-Silván, C., et al., Archaeal diversity in biofilm technologies applied to treat urban and industrial wastewater: Recent advances and future prospects, Int. J. Molec. Sci., 2013, vol. 14, pp. 18572–18598.

    Article  Google Scholar 

  • Chen Y., Yi-Liang Li, Gen-Tao Zhou, et al. Biomineralization mediated by anaerobic methane-consuming cell consortia, Sci. Rep., 2014, vol. 4, no. 5696, pp. 1–8.

    Google Scholar 

  • Drits, V.A., McCarty, D.K., Sakharov, B.A., and Milliken, K.L., New insight into structural and compositional variability in some ancient excess-Ca dolomite, Can. Mineral., 2005, vol. 43, pp. 1255–1290.

    Article  Google Scholar 

  • Flügel, E., Microfacies data: matrix and grains, Microfacies of Carbonate Rocks, Berlin: Springer, 2010.

    Book  Google Scholar 

  • Kaczmarek, S.E. and Sibley, D.F., On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments: an alternative model for the geochemical evolution of natural dolomites, Sediment. Geol, 2011, vol. 240, pp. 30–40.

    Article  Google Scholar 

  • Kazmierczak, J., Coleman, M.L., Gruszczynski, M., and Kempe, S., Cyanobacterial key to the genesis of micritic and peloidal limestones in ancient seas, Acta Palaeontol. Polon., 1996, vol. 41, no. 4, pp. 319–338.

    Google Scholar 

  • Knittel, K. and Boetius, A., Anaerobic oxidation of methane: progress with an unknown process, Ann. Rev. Microbiol., 2009, vol. 63, pp. 311–334.

    Article  Google Scholar 

  • Knoll, A.H. and Semikhatov, M.A., The genesis and time distribution of two distinctive Proterozoic stromatolite microstructures, Palaios, 1998, vol. 13, no. 4, pp. 408–422.

    Article  Google Scholar 

  • Liu, Y., Xu, H.L., Show, K.Y., and Tay, J.H., Anaerobic granulation technology for wastewater treatment, J. Microbiol. Biotechnol., 2002, vol. 18, pp. 99–113.

    Article  Google Scholar 

  • Margesin, R. and Miteva, V., Diversity and ecology of psychrophilic microorganisms, Res. Microbiol., 2011, vol. 162. pp. 1–16.

    Article  Google Scholar 

  • McCarty, D.K., Drits, V.A., and Sakharov, B.A., Relationship between composition and lattice parameters of some sedimentary dolomite varieties, Eur. J. Mineral., 2006, vol. 18, pp. 611–627.

    Article  Google Scholar 

  • Ovchinnikova, G.V., Semikhatov, M.A., Gorokhov, I.M., et al., The U–Pb systematics of Precambrian carbonates: Riphean Sukhaya Tunguska Formation in the Turukhansk Uplift, Siberia, Litol. Polezn. Iskop., 1995, no. 5, pp. 525–536.

    Google Scholar 

  • Petrov, P.Yu., Conditions of the deposition of Riphean lower formations in the Turukhansk Uplift, Stratigr. Geol. Korrelyatsiya, 1993, vol. 1, no. 2, pp. 55–66.

    Google Scholar 

  • Petrov, P.Yu., Semikhatov, M.A., and Sergeev, V.N., Development of the Riphean carbonate platform and distribution of silicified microfossils therein (Sukhaya Tunguska Formation, Turukhansk Uplift, Siberia), Stratigr. Geol. Korrelyatsiya, 1995, vol. 3, no. 6, pp. 79–99.

    Google Scholar 

  • Petrov, P.Yu., Microbial mats as a source of carbonate sediments in the Late Precambrian: Evidence from the Linok Formation, the Middle Riphean of the Turukhansk Uplift, Siberia, Lithol. Miner. Resour., 2001, no. 2, pp. 161–186.

    Google Scholar 

  • Petrov, P.Yu., Riphean basins in the Turukhansk Uplift of Siberia: Nature, evolution, and role of the biotic components in sedimentogenesis, Extended Abstract of PhD (Geol.–Miner.) Dissertation, Moscow: GIN RAN, 2006.

    Google Scholar 

  • Petrov, P.Yu., Molar tooth structures: mechanisms of their formation and evolution of carbonate sedimentogenesis in the Precambrian (Riphean of the Turukhansk Uplift in Siberia). Types of sedimentogenesis and lithogenesis and their evolution in the Earth’s history, in Materialy 5-go Vserossiiskogo litologicheskogo soveshchaniya (Materials of the 5th All-Russia Litholgical Conference, Yekaterinburg: TGG UrO RAN, 2008, vol. 2, pp. 156–159.

    Google Scholar 

  • Petrov, P.Yu., Molar tooth structures: Formation and specificity of carbonate diagenesis in the Late Precambrian, Middle Riphean Sukhaya Tunguska Formation of the Turukhansk Uplift, Siberia, Stratigr. Geol. Correlation, 2011, vol. 19, no. 3, pp. 247–267.

    Article  Google Scholar 

  • Regnier, P., Dale, A.W., Arndt, S., et al., Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective, Earth-Sci. Rev., 2011, vol. 106, pp. 105–130.

    Article  Google Scholar 

  • Riding, R., Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites, Geol. Croat. 2008, vol. 61 (2/3), pp. 73–103.

    Google Scholar 

  • Riding, R., The nature of stromatolites: 3,500 million years of history and a century of research, in, Advances in Stromatolite Geobiology, Lecture Notes in Earth Sciences, Reitner, J., et al., Eds., Berlin: Springer, 2011, vol. 131.

    Google Scholar 

  • Schink, B., Principles and limits of anaerobic degradation, environmental and technological aspects, in, Biology of Anaerobic Microorganisms, Zehnder, A.J.B., Ed., New York: Wiley, 1988.

    Google Scholar 

  • Schink, B. and Stams, A.J.M., Syntrophism among prokaryotes, in The Prokaryotes, Dworkin, M., Ed., New York: Springer, 2006, vol. 2.

    Google Scholar 

  • Searl, A., Discontinuous solid solution in Ca-rich dolomites: the evidence and implications for the interpretation of dolomite petrographic and geochemical data, in Dolomites: a Volume in Honour of Dolomieu, Purser, B., Ed., Int. Ass. Sedimentol. Spec. Publ., 1994, vol. 21, pp. 361–376.

    Chapter  Google Scholar 

  • Semikhatov, M.A. and Serebryakov, S.N., Sibirskii gipostratotip rifeya (The Siberian Hypostratotype of the Riphean), Moscow: Nauka, 1983.

    Google Scholar 

  • Semikhatov, M.A., Ovchinnikova, G.V., Gorokhov, I.M., et al., Isotope age of the Middle–Upper Riphean boundary: Pb–Pb Geochronology of the Lakhanda Group carbonates, eastern Siberia, Dokl. Earth Sci., 2000, vol. 372, no. 2, pp. 625–629.

    Google Scholar 

  • Sergeev, V.N., Okremnennye mikrofossilii dokembriya: priroda, klassifikatsiya i biostratigraficheskoe znachenie (Precambrian Silicified Microfossils: Nature, Classification, and Biostratigraphic Implication), Moscow: GEOS, 2006.

    Google Scholar 

  • Sergeev, V.N., Knoll, A.H., and Petrov, P.Yu., Paleobiology of the Mesoproterozoic-Neoproterozoic transition: The Sukhaya Tunguska Formation, Turukhansk Uplift, Siberia, Precambrian Res., 1997, vol. 85, pp. 201–239.

    Article  Google Scholar 

  • Sergeev, V.N., Sharma, M., and Shukla, Y., Proterozoic fossil cyanobacteria, Palaeobotanist, 2012, vol. 61, pp. 189–358.

    Google Scholar 

  • Thomsen, T.R., Finster, K., and Ramsing, N.B., Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment, Appl. Environ. Microbiol., 2001, vol. 67, pp. 1646–1656.

    Article  Google Scholar 

  • Voronova, L.G. and Radionova, E.P., Vodorosli i mikrofitolity paleozoya (Paleozoic Algae and Microphytolites), Moscow: Nauka, 1976.

    Google Scholar 

  • Warren, J., Dolomite: occurrence, evolution and economically important associations, Earth-Sci. Rev., 2000, vol. 52, pp. 1–81.

    Article  Google Scholar 

  • Zavarzin, G.A., Lektsii po prirodovedcheskoi mikrobiologii (Lectures on Natural-Historical Microbiology), Moscow: Nauka, 2003.

    Google Scholar 

  • Zhuravleva, Z.A., Onkolity i katagrafii rifeya i nizhnego kembriya Sibiri i ikh stratigraficheskoe znachenie (Riphean and Lower Cambrian Oncolites and Catagraphies of Siberia and Their Stratigraphic Implication), Moscow: Nauka, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Yu. Petrov.

Additional information

Original Russian Text © P.Yu. Petrov, 2016, published in Litologiya i Poleznye Iskopaemye, 2016, No. 4, pp. 336–358.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, P.Y. Molar tooth structures and origin of peloids in proterozoic carbonate platforms (Middle Riphean of the Turukhansk Uplift, Siberia). Lithol Miner Resour 51, 290–309 (2016). https://doi.org/10.1134/S0024490216040064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490216040064

Navigation