Skip to main content
Log in

Hydrocarbon source rocks in sedimentary basins of continental margins in the Middle-Late Paleozoic

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The second half of the Paleozoic was marked by amalgamation of large continental blocks. The collision between the Laurentia and Baltica continents in the Devonian culminated in the formation of Laurussia. This event was followed by accretion of the Siberian and Kazakhstan continental blocks after the closure of the Uralian marine basin in the terminal Carboniferous-initial Permian. These processes were responsible for the formation of the Pangea supercontinent at the end of the Permian Period. They were accompanied by climate changes reflected in the alternation of warming and cooling epochs. One of these cooling epochs was terminated by large-scale glaciation of Gondwana at the end of the Carboniferous Period. Nevertheless, the most significant process, which drastically changed the existing paleogeographic situation, was colonization of continents by plants and animals, and, thus, accumulation of coaliferous formations in them. The lacustrine and sea basins also accumulated humic and mixed humic/sapropel organic matter (OM) in addition to pure sapropelic sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazhenova, T.K., Shimanskii, V.K., Vasil’eva, V.F. et al., Organicheskaya geokhimiya Timano- - Pechorskogo basseina (Organic Geochemistry of the Timan-Pechora Basin), St.-Petersburg: VNIGRI, 2008.

    Google Scholar 

  • Beauchamp, B. and Henderson, Ch., The Lower Permian Raanes, Great Gear Cape and Trappers Cove formations, Sverdrup basin, Canadian Arctic: Stratigraphy and Conodont zonation, Bull. Canad. Petrol. Geol. 1994, vol. 42, no. 3, pp. 562–597.

    Google Scholar 

  • Beauchamp, B., Baud, A. Growth and demise of Permian biogenic chert along northwest Pangea: Evidence for end-Permian collapse of thermohaline circulation, Palaeogeogr., Palaeoclimat., Palaeoecol., 2002, vol. 184, pp. 37–63.

    Article  Google Scholar 

  • Blomeier, D., Dustira, A. Depositional model of a stormdominated, temperate to cold, silica dominated shelf: The Permian Kapp Starostin Formation of Svalbard, Abstract of Report, Symposium: The Permian Strata of Svalbard, Tromso, 2013, pp. 10–11

    Google Scholar 

  • Buatois, L. and Mangano, M., Trace fossil analysis of lacustrine facies and basins, Palaeogeogr., Palaeoclimat., Palaeoecol., 1998, vol. 140, nos. 1/4, pp. 367–382.

    Article  Google Scholar 

  • Bugge, T., Ringas, J., Leith, D., et al., Upper Permian as a new play model on the mid-Norwegian continental shelf investigated by shallow stratigraphic drilling, Bull. AAPG, 2002, vol. 86, no. 1, pp. 107–127.

    Google Scholar 

  • Carter, D. and Pickerill, R., Algal swamp, marginal and shallow evaporitic lacustrine lithofacies from the Late Devonian-Early Carboniferous Albert formation, SE New Brunswick, Canada, Atlant. Geol., 1985, vol. 21, nos. 1/2.

    Google Scholar 

  • Chori, K. A., Mori, A., and Iasky, R., Modeling petroleum generation in the Paleozoic of the Carnarvon basin, Western Australia: Implications for perspectivity, Bull. AAPG, 2005, vol. 89, no. 1, pp. 27–40.

    Article  Google Scholar 

  • Cioppa, M., Symons, D., Al-Aasm, I., et al., Evaluating the timing of hydrocarbon generation in the Devonian Duvernay formation: Paleomagnetic, rock magnetic and geochemical evidence, Mar. Petrol. Geol., 2002, vol. 19, no. 3, pp. 275–287.

    Article  Google Scholar 

  • Davies, G. and Nassichuk, W., An Early Carboniferous (Visean) lacustrine oil shale in Canadian Arctic Archipelago, Bull. AAPG, 1988, vol. 72, no. 1, pp. 101–113.

    Google Scholar 

  • Debard, M.-P. and Paris, F., Paleontological and geochemical characteristics of Silurian black shale formation from the central Brittany domain of the Armoprican massif (NW-France), Chem. Geol., 1986, vol. 55, pp. 17–28.

    Article  Google Scholar 

  • Dyni, J.R., Geology and resources of some world oil-shale deposits, Oil shale, 2002, vol. 20, no. 3, pp. 193–252.

    Google Scholar 

  • Eaton, S.R., Shale play extends to Canada, AAPG Explorer, 2010, no. 1, pp. 1–5.

    Google Scholar 

  • Endelger, T., Lash, G., and Uzutegui, S., Joint sets that enhance production from Middle and Upper Devonian gas shale of the Appalachian basin, Bull. AAPG, 2009, vol. 93, no. 7, pp. 857–889.

    Article  Google Scholar 

  • Evans, P.A., A fundamental Precambrian-Phanerozoic shift in Earth’s glacial style?, Tectonophysics, 2003, vol. 375, pp. 353–385.

    Article  Google Scholar 

  • Gavrish, V.K., Machulina, S.A., and Kurilenko, V.S., Visean oil-source formation of the Dnieper-Donets basin, Dokl. Akad. Nauk Ukrainy, 1994, no. 7, pp. 92–95.

    Google Scholar 

  • Gottikh, R.P. and Pisetskii, B.I., Issue of the formation of oil source sequences, Georesursy, 2006, no. 4, pp. 125–137.

    Google Scholar 

  • Hester, T., Schmoker, J., and Sahl, H., Log-derived regional source rock characteristics of the Woodford Shale, Anadarko basin, Oklahoma, U.S. Geol. Surv. Bull. 1990, vol. 1866-D.

  • Hickey J. and Bo Henk, Lithofacies summary of the Mississippian Barnett shale, Mitchel 2 T.P. Sims well, Wise County, Texas, Bull. AAPG, 2007, vol. 91, no. 4, pp. 437–443.

    Article  Google Scholar 

  • Hill, R., Jarvie, D., Zumberge, J., et al., Oil and gas geochemistry and petroleum systems of the Fort Worth basin, Bull. AAPG, 2007, vol.91, no. 4, pp. 445–473.

    Article  Google Scholar 

  • Huber, T.P., Conodont biostratigraphy of the Bakken formation and lower Lodgepole formation (Devonian and Mississippian), Williston basin, North Dakota, MS. Thesis, Univ. North Dakota, Grand Forks, North Dakota, 1986.

    Google Scholar 

  • Isacksen, G., Central North Sea hydrocarbon systems: Generation, migration, entrapment and thermal degradation of oil and gas, Bull. AAPG, 2004, vol. 88, no. 11, pp. 1545–1572.

    Article  Google Scholar 

  • Kombrink H. The Carboniferous of the Netherlands and surrounding areas, a basin analysis, Geologica Ultraiectina. Universiteit Utrecht, 2008, no. 294, pp. 182.

    Google Scholar 

  • Konyukhov, A.I., Korchagina, Yu.I., Fattakhudinov, S.A. The Artinskian domanikites in thermal zones and contacts with them, Abstracts of Papers, V All-Russia Seminar “Organic Matter in Recent and Fossil Sediments,” Moscow: MGU, 1976, pp. 144–146.

    Google Scholar 

  • Konyukhov, A.I., Tran Ahn Hao, and Frolov, S.V., Devonian history and paleogeography of the Northern margin of the Precaspian basin, EAGE 60th Conf. Techn. Exhib., Leipzig, 1998.

    Google Scholar 

  • Konyukhov, A.I., Baimagambetov, B.K., and Kan, A.N., The eastern flank of the North Caspian depression: Sedimentary complexes and sedimentation settings in the Early and Middle Carboniferous, Lithol. Miner. Resour., 2006, no. 6, pp. 583–601.

    Google Scholar 

  • Konyukhova, V.A., Geochemical prediction of petroleum potential and deeply subsided Devonian rocks at the northern flank of the North Caspian depression, Moscow Univ. Geol. Bull., 2001, no. 4, pp. 31–40.

    Google Scholar 

  • Kotorba, M., Perut, T., Kosakowski, et al., Organic geochemistry, depositional history and hydrocarbon generation modeling of the Upper Permian Kupferschiefer and Zechstein limestone strata in SW Poland, Mar. Petrol. Geol. 2006, vol. 23, pp. 371–386.

    Article  Google Scholar 

  • Lewan, M., Henry, M., Higley, D., et al., Material-balance assessment of the New Albany — Chesterian petroleum system of the Illinois basin, Bull. AAPG, 2002, vol. 86, no. 5, pp. 745–777.

    Google Scholar 

  • Lima, R.D. and De Ros, L.F., The role of depositional setting and diagenesis on the reservoir quality of Devonian sandstones from the Solimoes basin, Brazilian Amazonia, Mar. Petrol. Geol., 2002, vol. 19, no. 9, pp. 1047–1071.

    Article  Google Scholar 

  • Luning, S., Phanerozoic in the Northern African basins, Encyclopedia of Geology, Elsevier, 2005, vol. 1, pp. 152–172.

    Google Scholar 

  • MacGregor, D., Robinson, J., and Spear, G., Play fairways of the Gulf of Guinea transform margin, in Petroleum Geology of Africa — New Themes and Developing Technologies, Arthur, T., MacGregor, D., and Cameron, N., Eds., Geol. Soc. London. Spec. Publ., 2003, vol. 207.

  • Macleod, R., The tasmanite oil shale resource Latrobe-Railton area, Tasmania, in Boss Resources, 2004, pp. 1–6.

    Google Scholar 

  • Maugham, E., Geological setting of oil shale in the Permian Phosphoria formation and some of the geochemistry of these rocks, Abstract of Report, Symp. Geochemistry and Chemistry of Oil Shale, Seattle, 1983, 3–5.

    Google Scholar 

  • Miceli Romero, A., Philp, R., Organic geochemistry of the Woodford shale, southeastern Oklahoma: How variable can shale be?, Bull. AAPG, 2012, vol. 96, no. 3, pp. 493–517.

    Article  Google Scholar 

  • Milani, E.J. and Zalan, P.V., An outline of the geology and petroleum systems of the Paleozoic Interior basins of South America, Episodes, 1999, vol. 22, no. 3, pp. 199–205.

    Google Scholar 

  • Milliken, K., Esch, W., Reed, R., et al., Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett shale (Mississippian), Fort Worth basin, Texas, Bull. AAPG, 2012, vol. 96, no. 8, pp. 1553–1578.

    Article  Google Scholar 

  • Milliken, K., Rudnicki, M., Awwiller, D., et al., Organic matter-hosted pore system, Marcellus formation (Devonian), Pennsylvania, Bull. AAPG, 2013, vol. 97, no. 2, pp. 177–200.

    Article  Google Scholar 

  • Modern Shale Gas. Development in the USA: A Primer, U.S. Depart. Energy, Office of Fossil Energy, National Energy Technology Laboratory, 2009.

    Google Scholar 

  • Moore, St. and Hovland, R., Geochemistry and stratigraphy of the Meade Peak phosphatic shale member of the Phosphoria formation near Hill Spring, Caribou county, South-Eastern Idaho, Technical Report 90-7, Idaho Geol. Surv., 1990.

    Google Scholar 

  • Ness, Sh., Benteau, R., and Leggitt, Sh., Horn River shales…boring and black or beautiful complex?, Geonanada. EOG Resources, Canada Inc., 2010.

    Google Scholar 

  • Net, L.I., Alonso, M.S., and Limarino, C., Source rock and environmental control on clay mineral association, lower section of Paganzo group, NW Argentina, Sediment. Geol., 2002, vol. 152, pp. 183–199.

    Article  Google Scholar 

  • Osnovnye zakonomernosti ugleobrazovaniys na territory SSSR (Main Reguliarities of Coal Formation in the Soviet Union), Shabarov, N.V., Ed., Leningrad: Nedra, 1975.

    Google Scholar 

  • Pashin, J., Grace, R., and Kopaska-Merkel, D., Devonian shale plays in the Black Warrior basin and Appalachian thrust belt of Alabama, Int. Coalbed Shale Gas Symposium., Tuscaloosa, 2010.

    Google Scholar 

  • Pedersen, M., Nielsen, J., Boyce, A., et al., Timing and genesis of base-metal mineralization of black shale of the Upper Permian Ravnefjeld formation, Wegener Halvo, East Greenland, Miner. Deposita, 2003, vol. 38, pp. 108–123.

    Article  Google Scholar 

  • Petroleum Formation in the Domanik-Type Rocks, Neruchev, S.G., Ed., Leningrad: Nedra, 1986.

    Google Scholar 

  • Putova’ni nasim pravekem, Kostak, M. and Mazuch, M., Eds., Praha: Vidal Granit, 2011.

    Google Scholar 

  • Sachsenhofer, R., Shymanovsky, V., Bechtel, A., et al., Paleozoic source rocks in the Dniepr-Donetz basin, Ukraine, Petrol. Geosci. 2010, vol. 16, no. 4, pp. 377–399.

    Article  Google Scholar 

  • Scheffler, K., Buehmann, D., and Schwark, L., Analysis of Late Paleozoic glacial to postglacial sedimentary successions in South Africa, Palaeogeogr., Palaeoclimat., Palaeoecol., 2006, vol. 240, pp. 184–203.

    Article  Google Scholar 

  • Smith, M. and Bustin, R., Late Devonian and Early Mississippian Bakken and Exshau black shale source rocks, Western Canada sedimentary basin: A sequence stratigraphic interpretation, Bull. AAPG, 2000, vol. 84, no. 7, pp. 940–960.

    Google Scholar 

  • Smith, G. and Jacobi, R., Tectonic and eustatic signals in the sequence stratigraphy of the Upper Devonian Canadaway Group, New York State, Bull. AAPG, 2001, vol. 85, no. 2, pp. 325–357.

    Google Scholar 

  • Spencer, R. and Weedmark, T., Understanding the geology, geophysics and geochemistry of the Muskwa oil window (the Horn River basin), Univ. Calgary: www.emerging-shaleplay-canada-2012.com.

  • Starch, D., Silurian-Jurassic stratigraphy and basin evolution NW Argentina, in Petroleum basins of South America, Tankard, A., Suarez, R., and Welsink, H., Eds., Bull. AAPG Memoir 62, 1995, Chapter 9, pp. 237–254.

    Google Scholar 

  • Tissot, B. and Welte, D., Petroleum Formation and Occurrence, Heidelberg: Springer, 1978. Translated under the title Obrazovanie i rasprostranenie nefti, Moscow: Mir, 1981.

    Book  Google Scholar 

  • Torsvik, Tr., Palaeozoic Palaeogeography: A North Atlantic viewpoint, GFF, 1998, vol. 120, pp. 109–118.

    Article  Google Scholar 

  • Trexler, J., Cole, J., and Cashman, P., Middle Devonian — Mississippian stratigraphy on and near the Nevada Test Side: Implications for hydrocarbon potential, Bull. AAPG, 1996, vol. 80, no. 11, pp. 1726–1762.

    Google Scholar 

  • Ulling, J., Palynostratigraphic investigation of the Albert formation (Lower Carboniferous) of New Brunswick, Canada, Palynology, 1987, vol. 11, pp. 73–96.

    Article  Google Scholar 

  • Veevers, J.J., Gondwanaland and Gondwana, Encyclopedia of Geology, Elsevier, 2005, vol. 2, pp. 122–154.

    Google Scholar 

  • Wade, J., Nonproducing Paraguay’s potential conventional and unconventional, Oil Gas J., 2009, no. 4, pp. 39–42.

    Google Scholar 

  • Wang, H., Shihong Zhang, and Guoqi He, China and Mongolia, Encyclopedia of Geology, Elsevier, 2005, vol. 1, pp. 545–558.

    Google Scholar 

  • World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States, U.S. Depart. Energy, Washington DC 20585, 2011.

  • Xiao, X.M., Zhao, B.Q., and Thu Z.L., Upper Paleozoic petroleum system, Ordos basin, Mar. Petrol. Geol., 2005, vol. 22, pp. 945–963.

    Article  Google Scholar 

  • Yahi, N., Schaefer, R., and Littke, R., Petroleum generation and accumulation in the Berkin basin, Eastern Algeria, Bull. AAPG, 2001, vol. 85, no. 8, pp. 1439–1467.

    Google Scholar 

  • Zharkov, M.A. and Chumakov, N.M., Paleogeography and sedimentation in the Permo-Triassic reorganization in the biosphere, Strat. Geol. Correlation, 2001, vol. 9, no. 4, pp. 325–336.

    Google Scholar 

  • Zhuoheng Chen, Osadetz, K., Chunqing Jiang, et al., Spatial ariation of Bakken or Lodgepole oils in the Canadian Williston basin, Bull. AAPG, 2009, vol. 93, no. 6, pp. 829–851.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Konyukhov.

Additional information

Original Russian Text © A.I. Konyukhov, 2014, published in Litologiya i Poleznye Iskopaemye, 2014, No. 4, pp. 354–378.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konyukhov, A.I. Hydrocarbon source rocks in sedimentary basins of continental margins in the Middle-Late Paleozoic. Lithol Miner Resour 49, 336–358 (2014). https://doi.org/10.1134/S0024490214040038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490214040038

Keywords

Navigation