Skip to main content
Log in

Genesis of carbonates from the Parnok ferromanganese deposit, Polar Urals

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The Parnok deposit is made up of stratiform lodes of iron (magnetite) and manganese (oxide-carbonate, carbonate, and carbonate-silicate) ores localized among terrigenous-carbonate sediments (black shales) on the western slope of the Polar Urals. The lithological study showed that ore-bearing sediments were accumulated in a calm hydrodynamic setting within a relatively closed seafloor area (trap depressions). Periodic development of anaerobic conditions in the near-bottom seawater was favorable for the accumulation of dispersed organic matter in the terrigenous-carbonate sediments. Carbon required to form calcium carbonates in the ore-bearing sediments was derived from carbon dioxide dissolved in seawater. In the organic-rich sediments, carbonates were formed with the participation of carbon dioxide released by the destruction of organic matter. However, δ13C values (from 0.5 to −4.4‰ PDB) suggest a relatively low fraction of the isotopically light biogenic carbon in the host calcite. The most probable sources of Fe and Mn were hydrothermal seepages at the seafloor. The Eh-pH conditions during stagnation were favorable for the precipitation of Fe and accumulation of Mn in a dissolved state. Transition from the stagnation regime to the concentration of oxygen in near-bottom waters was accompanied by oxidation of the dissolved Mn and its precipitation. Thus, fluctuations in Eh-pH parameters of water led to the differentiation of Fe and Mn. Initially, these elements were likely precipitated as oxides and hydroxides. During the subsequent lithification, Fe and Mn were reduced to form magnetite and rhodochrosite. The texture and structure of rhodochrosite aggregates indicate that manganese carbonates already began to form at the diagenetic stage and were recrystallized during the subsequent lithogenetic stages. Isotope data (δ13C from −8.9 to −17.1‰ PDB) definitely indicate that the oxidized organic matter of sediment served as the main source of carbon dioxide required to form manganese carbonates. Carbonates from host rocks and manganese ores have principally different carbon isotopic compositions. Unlike carbonates of host rocks, manganese carbonates were formed with an active participation of biogeochemical processes. Further processes of metagenesis (T ≈ 250–300°C, P ≈ 2 kbar) resulted in the transformation of textures, structures, and mineral composition of all rocks of the deposit. In particular, increase in temperature and pressure provided the formation of numerous silicates in manganese ores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astakhov, A.S., Astakhova, N.V., Satarova, V.V., et al., Osadkonakoplenie i rudogenez vo vpadine Deryugina (Okhotskoe more) (Sedimentation and Ore Genesis in the Deryugin Basin, Sea of Okhotsk), Vladivostok: Dal’nauka, 2008.

    Google Scholar 

  • Berner, R.A., Early diagenesis-A theoretical approach, Princeton: Princeton Univ. Press, 1980.

    Google Scholar 

  • Bogdanov, Yu.A., Lisitzin, A.P., Binns, R.A., et al., Lowtemperature hydrothermal deposits of Franklin seamount, Woodlark basin, Papua New Guinea, Mar. Geol., 1997, vol. 142, nos. 1/4, p. 99–117.

    Article  Google Scholar 

  • Bogdanov, Yu.A., Vikent’ev, I.V., Lein, A.Yu., et al., Lowtemperature hydrothermal formations in the MAR rift zone, Geol. Ore Deposits, 2008, no. 2, pp. 132–150.

    Google Scholar 

  • Brusnitsyn, A.I. and Kuleshov, V.N., Geochemistry of orebearing sediments in the Parnok ferromanganese deposit (Polar Urals), in Metallogeniya drevnikh i sovremennykh okeanov-2011 (Metallogeny of Ancient and Recent Oceans-2011), Miass: Imin UrO RAN, 2011, pp. 97–104.

    Google Scholar 

  • Brusnitsyn, A.I. and Zhukov, I.G., Manganiferous rocks of the Magnitogorsk paleovolcanic belt (Southern Urals): Structure of deposits, composition, and genesis, Litosfera, 2010, no. 2, pp. 77–99.

    Google Scholar 

  • Brusnitsyn, A.I., Kol’tsov, A.B., and Kalinina, O.G., Mineral assemblages and thermobarometry of metamorphosed manganese ores in the Parnok deposit (Polar Urals), Ural. Letn. Mineral. Shkola-99, Yekaterinburg, 1999, pp. 260–264.

    Google Scholar 

  • Butuzova, G.Yu., Gidrotermal’no-osadochnoe rudoobrazovanie v riftovoi zone Krasnogo morya (Hydrothermal-Sedimentary Ore Formation in the Rift Zone of the Red Sea), Moscow: GEOS, 1998.

    Google Scholar 

  • Coleman, M.L., Geochemistry of diagenetic non-silicate minerals: Kinetic considerations, London: Phil. Trans. R. Soc. London, 1985, A315, pp. 39–56.

    Google Scholar 

  • Crerar, D.A., Namson, J., Chyi, M.S., et al., Manganiferous cherts of the Franciscan assemblage: I. General geology, ancient and modern analogues, and implications for hydrothermal convection at oceanic spreading centers, Econ. Geol., 1982, vol. 77, p. 519–540.

    Article  Google Scholar 

  • Emel’yanov, E.M., Ferromanganese ore process in the Baltic Sea, Lithol. Miner. Resour., 2011, no. 3, pp. 221–242.

    Google Scholar 

  • Fan Delian, Liu Tiebing, Ye Jie, The process of formation of the manganese carbonate deposits hosted in black shale series, Econ. Geol., 1992, vol. 87, pp. 1419–1429.

    Article  Google Scholar 

  • Force, E.R. and Cannon, W.F., Depositional model for shallow-marine manganese deposits around black shale basins, Econ. Geol., 1988, vol. 83, pp. 93–117.

    Article  Google Scholar 

  • Frakes, L. and Bolton, B., Origin of manganese giants: Sea level change and anoxic-oxic history, Geology, 1984, vol. 12, pp. 83–86.

    Article  Google Scholar 

  • Froelich, P.N., Klinkhammer, G.P., Bender, M.L., et al., Early oxidation of organic matter in pelagic sediments of the eastern Equatorial Atlantic: Suboxic diagenesis, Geochim. Cosmochim. Acta, 1979, vol. 43, pp. 1075–1099.

    Article  Google Scholar 

  • Gerasimov, N.N., Geological structure and genesis of the Parnok ferromanganese deposit (Polar Urals), Extended Abstract of PhD (Geol.-Miner.) Dissertation, Moscow: MGU, 2000.

    Google Scholar 

  • Gerasimov, N.N., Nasedkina, V.Kh., Onishchenko, S.A., and Shishkin, M.A., Mineral composition of ores in the Parnok ferromanganese deposit (Polar Urals), Geol. Ore Deposits, 1999, no. 1, pp. 81–93.

    Google Scholar 

  • Gutzmer, J. and Beukes, N.J., The manganese formation of the Neoproterozoic Penganga Group, India — Revision of an enigma, Econ. Geol., 1998, vol. 93, pp. 1091–1102.

    Article  Google Scholar 

  • Hoefs, J., Stable Isotope Geochemistry, Berlin: Springer, 2009.

    Google Scholar 

  • Honnorez, J., Von Herzen R.P., Barrett T.J., et al., Hydrothermal mounds and young ocean crust of the Galapagos: Preliminary deep sea drilling results, Init. Rep. Deep Sea Drill. Project, 1983, vol. 70, p. 459–481.

    Google Scholar 

  • Huckriede, H. and Meischner, D., Origin and environment of manganese-rich sediments within black-shale basins, Geochim. Cosmochim. Acta, 1996.

    Google Scholar 

  • Kholodov, V.N., Role of hydrosulfuric basins in the sedimentary ore formation, Lithol. Ore Deposits, 2002, no. 5, pp. 447–468.

    Google Scholar 

  • Konhauser, K., Introduction to Geomicrobiology, Blackwell Publishing, 2007.

    Google Scholar 

  • Kontar, E.S., Savel’eva, K.P., Surganov, A.V., et al., Margantsevye mestorozhdeniya Urala (Manganese Deposits of the Urals), Yekaterinburg: Ural. Geol.-S″emochn. Eksped., 1999.

    Google Scholar 

  • Kuleshov, V.N., Geokhimiya izotopov (δ 13 S and δ 18 O) i proiskhozhdenie karbonatnykh margantsevykh rud (Geology of Isotopes (δ13S and δ18O) and Origin of Manganese Carbonate Ores), Moscow: Geoinformmark, 2001a.

    Google Scholar 

  • Kuleshov, V.N., Evolution of isotopic carbon dioxidewater systems in lithogenesis: Communication 1. Sedimentogenesis and diagenesis, Lithol. Miner. Resour., 2001b, no. 5, pp. 485–502.

    Google Scholar 

  • Kuleshov, V.N., Evolution of isotopic carbon dioxidewater systems in lithogenesis: Communication 2. Catagenesis, Lithol. Miner. Resour., 2001c, no. 6, pp. 603–622.

    Google Scholar 

  • Kuleshov, V.N. and Brusnitsyn, A.I., Isotopic composition (δ13S, δ18O) and origin of carbonates in manganese deposits of the southern Urals, Lithol. Miner. Resour., 2005, no. 4, pp. 411–424.

    Google Scholar 

  • Lein, A.Yu., Authigenic carbonate formation in the ocean, Lithol. Miner. Resour., 2004, no. 1, pp. 3–34.

    Google Scholar 

  • Lemeshev, A.V., Vishev, V.S., D’yakonova, A.G., et al., New data on the structure of the Parnok ferromanganese deposit (Subpolar Urals), in Geologiya i mineral’nye resursy Evropeiskogo severo-vostoka Rossii (Geology and Mineral Resources of the European Northeast Russia), Syktyvkar: Geoprint, 2009, vol. 3, pp. 216–218.

    Google Scholar 

  • Maynard, J.B., Manganiferous sediments, rocks and ores, Treatise on Geochemistry, 2003, vol. 7, pp. 289–308.

    Article  Google Scholar 

  • Munteanu, M., Marincea, S., Kasper, H.U., et al., Black chert-hosted manganese deposits from the Bistritei Mountains, Eastern Carpathians (Romania): Petrography, genesis and metamorphic evolution, Ore Geol. Rev., 2004, vol. 24, pp. 45–65.

    Article  Google Scholar 

  • Okita, P.M., Maynard, J.B., Spiker, E.C., and Force, E.R., Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore, Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 2679–2685.

    Article  Google Scholar 

  • Polgari, M., Model of formation of the carbonatic manganese ore of Urkut, Budapest: Lab. Geochem. Res., Hung. Acad. Sci., 1993a, pp. 109–128.

    Google Scholar 

  • Polgari, M., Manganese geochemistry-reflected by black shale formation and diagenetic processes, Budapest: Lab. Geochem. Res., Hung. Acad. Sci., 1993b, pp. 128–207.

    Google Scholar 

  • Puchkov, V.N., Batial’nye kompleksy passivnykh okrain geosinklinal’nykh oblastei (Bathyal Complexes of Passive Margins in Geosynclinal Zones), Moscow: Nauka, 1979.

    Google Scholar 

  • Roy, S., Manganese Deposits, London: Academic Press, 1981. Translated under the title Mestorozhdeniya margantsa, Moscow: Mir, 1986.

    Google Scholar 

  • Shishkin, M.A. and Gerasimov, N.N., The Parnok ferromanganese deposit (Polar Urals), Geol.Ore Desposits, 1995, no. 5, pp. 442–452.

    Google Scholar 

  • Silaev, V.I., Mekhanizmy i zakonomernosti epigeneticheskogo margantsevogo mineraloobrazovaniya (Mechanisms and Regularities of the Epigenetic Manganese Mineral Formation), Yekaterinburg: UrO RAN, 2008.

    Google Scholar 

  • Silaev, V.I. and Shiryaeva, L.L., The Parnok ferromanganese deposit: Myths and facts, Geol. Ore Deposits, 1997, no. 4, pp. 383–389.

    Google Scholar 

  • Starikova, E.V., Inventory of low-temperature hydrothermal-sedimentary deposits in the recent ocean, in Metallogeniya drevnikh i sovremennykh okeanov-2005 (Metallogeny of Ancient and Recent Oceans-2005), Miass: IMin UrO RAN, 2005, vol. 1, p. 77.

    Google Scholar 

  • Stolyarov, A.S., Ivleva, E.I., Khalezov, A.B., and Pechenkin, I.G., Marganets Rossii: sostoyanie, perspektivy osvoeniya i razvitiya mineral’no-syr’evoi bazy (Manganese of Russia: State and Perspective of the Development of Raw Mineral Base), Moscow: VIMS, 2009, no. 20.

    Google Scholar 

  • Voinovskii-Kriger, K.G., Two Paleozoic complexes on the western slope of the Polar Urals, Sov. Geol., 1945, no. 6, pp. 27–44.

    Google Scholar 

  • Yudovich, Ya.E. and Ketris, M.P., Geokhimiya chernykh slantsev (Geochemistry of Black Shales), Leningrad: Nauka, 1988.

    Google Scholar 

  • Yudovich, Ya.E., Shishkin, M.A., Lyutikov, N.V., et al., Geokhimiya i rudogenez chernykh slantsev Lemvinskoi zony Severnogo Urala (Geochemistry and Ore Genesis of Black Shales in the Lemva Zone of the Northern Urals), Syktyvkar: Prolog, 1998.

    Google Scholar 

  • Zykin, N.N., Geological structure and genesis of the Parnok ferromanganese deposit (Polar Urals), Vest. MGU. Ser. Geol., 2004a, no. 2, pp. 40–49.

    Google Scholar 

  • Zykin, N.N., Geological constraints and genesis or ores in the Parnok ferromanganese deposit, Extended Abstract of PhD (Geol.-Miner.) Dissertation, Moscow: MGU, 2004b.

    Google Scholar 

  • Zykin, N.N. and Erokhin, V.E., Mecahnism of the formation of manganese carbonate ores in the Parnok deposit (Polar Urals), in Uglerod: mineralogiya, geokhimiya i kosmokhimiya. Materialy mezhdunarodnoi konferentsii (Carbon: Mineralogy, Geochemistry, and Cosmochemistry), Syktyvkar: Geoprint, 2003, pp. 237–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Brusnitsyn.

Additional information

Original Russian Text © A.I. Brusnitsyn, V.N. Kuleshov, P.S. Kalugin, 2014, published in Litologiya i Poleznye Iskopaemye, 2014, No. 4, pp. 336–353.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brusnitsyn, A.I., Kuleshov, V.N. & Kalugin, P.S. Genesis of carbonates from the Parnok ferromanganese deposit, Polar Urals. Lithol Miner Resour 49, 320–335 (2014). https://doi.org/10.1134/S002449021403002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002449021403002X

Keywords

Navigation