Advertisement

Lithology and Mineral Resources

, Volume 45, Issue 1, pp 56–88 | Cite as

Structure of the precambrian sedimentary cover and upper part of the basement in the Central Russian Aulacogen and Orsha Depression (East European Platform)

  • N. P. ChamovEmail author
  • V. V. Kostyleva
  • A. F. Veis
Article

Abstract

The Precambrian sedimentary section and upper part of the basement of the Central Russian Aulacogen and Orsha Depression, two largest structures located beneath the Moscow Syneclise are analyzed. It has been established that the Late Riphean Central Russian Aulacogen was initiated on the Proterozoic crust of the Transcratonic belt that separates different-aged geological blocks of the East European Platform basement. The Orsha Depression is superposed both on sedimentary complexes of the aulacogen and rocks constituting structures surrounding the Transcratonic belt. Boundaries of the sedimentary cover and basement are outlined and a new structure (Toropets-Ostashkov Trough) is defined. The Precambrian section recovered by Borehole North Molokovo is proposed to serve as a reference one for the Central Russian Aulacogen. The CMP records demonstrate seismocomplexes, which allow one to trace rock members and sequences defined by drilling. Eight seismocomplexes, combination of which varies in different structures, are defined in the Upper Riphean-Vendian part of the sedimentary section. The section of the Central Russian Aulacogen includes the following sedimentary complexes: dominant gray-colored arkoses (R 3 1 ), variegated arkoses (R 3 2 ), red-colored arkoses (R 3 3 ), and volcanosedimentary rocks (V 1 2 ). The section of the Orsha Depression consists of dominant red-colored quartz sandstones (R 3 4 ), glacial and interglacial (V 1 1 ), and variegated volcanogenic-terrigenous sediments. The upper seismocomplex (V2) is composed of terrigenous and terrigenous-carbonate rocks. It represents the basal unit of the Moscow Syneclise, which marks the plate stage in development of the East European Platform. The upper part of the basement corresponds to a seismocomplex (Pr1) represented by dynamometamorphosed rocks that form a tectonic mélange. Analysis of the lateral and vertical distribution of the defined seismocomplexes made it possible to specify the structure of the Riphean-Vendian part of the sedimentary cover and to revise their formation history in some cases.

Keywords

Sandstone Mudstone Tourmaline East European Platform Detrital Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizberg, R.E., Geodynamic Evolution of the Pripyat Paleorift Trough, Dokl. Akad. Nauk BSSR, 1986, vol. 30, no. 5, pp. 460–463.Google Scholar
  2. Aksenov, E.M., History of Geological Evolution of the East European Craton in the Late Proterozoic, DSc (Geol.-Miner.) Dissertation, St. Petersburg: Inst. Geol. Geokhim. Dokembriya Ross. Akad. Nauk, 1998.Google Scholar
  3. Anatol’eva, A.I., Domezozoiskie krasnotsvetnye formatsii (Pre-Mesozoic Red-Colored Formations), Novosibirsk: Nauka, 1972.Google Scholar
  4. Batchelor, R.A. and Bowden, P., Petrogenetic Interpretation of Granitoid Rock Series Using Multicratonic Parameters, Chem. Geol., 1985, vol. 48, pp. 43–55.CrossRefGoogle Scholar
  5. Bogdanova, S.V., Segments of the East European Craton, Abstracts of Papers, EUROPROBE Symposium in Jablonna 1991 Polish Acad. Sci., Eur. Sci. Foundation, 1993, A-20(255), pp. 33–38.Google Scholar
  6. Bogdanova, S.V., Gorbatschev, R., and Stephenson, R.A., EUROBRIDGE: Palaeoproterozoic Accretion of Fennoscandia and Sarmatia, Tectonophysics, 2001, vol. 339, pp. 34–49.Google Scholar
  7. Bogdanova, S.V., Bibikova, E.V., Postnikov, A.V., and Taran, L.N., Early Proterozoic Magmatic Belt of the Moscow Region, Dokl. Akad. Nauk, 2004, vol. 395, no. 3, pp. 376–380 [Dokl. Earth Sci. (Engl. Transl.), 2004, vol. 395, no. 3, pp. 315–318].Google Scholar
  8. Chamov, N.P., Structure and Formation Model of the Mid-Russian Aulacogen, in Osadochnye basseiny: metodika izucheniya stroeniya i evolyutsii (Sedimentary Basins: Methods for the Investigation of Structure and Evolution), Moscow: Nauchyi Mir, 2004, pp. 142–159.Google Scholar
  9. Chamov, N.P., Tectonic History and a New Evolution Model of the Mid-Russian Aulacogen, Geotektonika, 2005, vol. 39, no. 3, pp. 3–22 [Geotectonics (Engl. Transl.), 2005, vol. 39, no. 3, pp. 169–185].Google Scholar
  10. Chamov, N.P. and Gorbachev, V.I., Structure and Rock Composition of the Bel’sk Uplift of the near Moscow Aulacogen, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2004, vol. 79, no. 4, pp. 3–10.Google Scholar
  11. Chamov, N.P. and Kostyleva, V.V., The Mid-Russian Aulacogen: Late Riphean System of Postcollision Tension in the Russian Plate, in Geologiya, geokhimiya, geofizika na rubezhe XX i XXI vekov (Geology, Geochemistry, and Geophysics at the Turn of XX and XXI Centuries), Moscow: SVYaZ-PRINT, 2002, vol. 1, pp. 114–115.Google Scholar
  12. Chamov, N. and Murdmaa, I., Coarse Fraction Minerals of Sands in Cascadia Margin Sediments, Leg 146 ODP, Abstracts of Papers, Proc. Ocean Drill. Progr., Sci. Res., College Station, TX: ODP, 1995, vol. 146, no. 1, pp. 33–43.Google Scholar
  13. Chamov, N.P., Kostyleva, V.V., Veis, A.F., and Gorbachev, V.I., Late Riphean Sedimentation in the Central Russian Aulacogen, Litol. Polezn. Iskop., 2003, vol. 38, no. 5, pp. 539–550 [Lithol. Miner. Resour. (Engl. Transl.), 2003, vol. 38, no. 5, pp. 458–467].Google Scholar
  14. Chamov, N.P., Kostyleva, V.V., Gorbachev, V.I., Gribova, I.S., Esipko, O.A., Konoval’tsev, Yu.B., and Filin, S.I., New Data on the Molokovo Basin Formation Mechanism (Russian Platform), Geotektonika, 2002, vol. 36, no. 3, pp. 9–21 [Geotectonics (Engl. Transl.), 2002, vol. 36, no. 3, pp. 176–187].Google Scholar
  15. Garetsky, R.G., Aulacogens in Platforms of Northern Eurasia, Geotektonika, 1995, vol. 30, no. 4, pp. 16–28.Google Scholar
  16. Garetsky, R.G., Sedimentary Basins of the Ancient Plat-form, Vest. OGGGGN Ross. Akad. Nauk, 1999, vol. 10, no. 4. URL: http://www.scgis.ru/russian/cp1251/h-dgggms/4-99/garetskiy.htm#begin.
  17. Garetsky, R.G., Karataev, G.I., Zlotsky, G., Astapenko, V.N., Belinsky, A.A., and Terletsky, V.V., Eurobridge Seismic Working Group, Seismic Velocity Structure across the Fennoscandia-Sarmatia Suture of the East European Craton beneath the EUROBRIDGE Profile through Lithuania and Belarus, Tectonophysics, 1999, vol. 314. pp. 193–217.CrossRefGoogle Scholar
  18. Gee, D.G. and Stephenson, R.A., The European Lithosphere: An Introduction European Lithosphere Dynamics, Gee, D.G. and Stephenson, R.A., Eds., London: Geol. Soc. Mem., 2006, no. 32, pp. 1–9.Google Scholar
  19. Geisler, A.N., Experience of Geochronological Correlations and Paleogeography of the Late Proterozoic Deposits in the Northern and Central Parts of the Russian Platform, Abstracts of Papers, Materialy po geol. evropeiskoi territorii SSSR (Proc. Geology of the European Territory of the USSR), Leningrad: Nedra, 1966, pp. 32–57.Google Scholar
  20. Geologiya Belarusi (Geology of Belarus) Makhnach, A.S., Garetsky, R.G., and Matveev, A.V., Eds., Minsk: Inst. Geol. Nauk Nats. Akad. Nauk Belarusi, 2001.Google Scholar
  21. Gordasnikov, V.N. and Troitskii, V.N., The Mid-Russian Aulacogen: The Main Structure of the Moscow Syneclise, Otech. Geol., 1966, no. 12, pp. 35–47.Google Scholar
  22. Kapustin, I.N., Vladimirova, T.I., Fedorov, D.L., et al., Gipsometricheskaya karta poverkhnosti kristallicheskogo fundamenta tsentral’noi i severnoi chastei Vostochno-Evropeiskoi platformy masshtaba 1: 2500000 (Hypsometric Map of the Crystalline Basement Surface in the Central and Northern Parts of the East European Craton, Scale 1: 2500000), St. Petersburg: Vseross. Geol. Razved. Inst., 2001.Google Scholar
  23. Keller, B.M., Upper Proterozoic of the Russian Platform (Riphean and Vendian), in Ocherki po regional’noi geologii SSSR (Essays on Regional Geology of the USSR), Moscow: Nauka, 1968, no. 2.Google Scholar
  24. Kheraskova, T.N., Volozh, Yu.A., Andreeva, N.K., et al., New Data on Structure and Accumulation Conditions of Riphean-Early Vendian Sedimentation in the Central Russian Aulacogen System, Geol. Vest. Tsentr. Raionov Rossii, 2001, no. 1, pp. 10–22.Google Scholar
  25. Kheraskova, T.N., Volozh, Yu.A., Vorontsov, A.K, et al., Sedimentation Conditions at the Central East European Platform in Riphean and Early Vendian, Litol. Polezn. Iskop., 2002, vol. 37, no. 1, pp. 77–92 [Lithol. Miner. Resour. (Engl. Transl.), 2002, vol. 37, no. 1, pp. 68–81].Google Scholar
  26. Kirsanov, V.V., Issue of the Stratigraphy of Cambrian Rocks in the Axial Moscow Syneclise, Dokl. Akad. Nauk SSSR, 1968, vol. 178, no. 5, pp. 1160–1163.Google Scholar
  27. Klevtsova, A.A., The Main Riphean Stages of Sedimentation in the Russian Platform (Early and Middle Stages), Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 1976, no. 7, pp. 3–15.Google Scholar
  28. Klevtsova, A.A., The Upper Proterozoic-Lower Paleozoic of the Moscow Syneclise: Problems of Boundaries, Geol. Geofiz. Razrabotka Neft. Mestorozhd., 2000, no. 12, pp. 33–42.Google Scholar
  29. Klevtsova, A.A., The Fourth Riphean Subdivision and Baikal Troughs in the East European Craton, Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 2003, no. 3, pp. 25–29.Google Scholar
  30. Kostyleva, V.V. and Simanovich, I.M., Mineralogy of Riphean Sandstones in the Orsha Depression: Significance for Stratigraphy and Tectonics, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2007, vol. 82, no. 2, pp. 57–65.Google Scholar
  31. Kostyleva, V.V., Chamov, N.P., Simanovich, I.M., and Anikeeva, O.V., Evolutionary Stages of Riphean Sedimentary Basins in the Central East European Platform (with the Kresttsy and Pavlov Posad Sedimentary Basins as Example), Litol. Polezn. Iskop., 2001, vol. 36, no. 4, pp. 408–417 [Lithol. Miner. Resour. (Engl. Transl.), 2001, vol. 36, no. 4, pp. 353–361].Google Scholar
  32. Kostyuchenko, S.L. and Ismail-Zade, A.T., Nature of Intense Sedimentation Phases in the Moscow Syneclise Based on the Results of Deep Investigation and Quantitative Analysis of Borehole Sections, Razved. Okhr. Nedr, 1998, no. 5, pp. 36–40.Google Scholar
  33. Kostyuchenko, S.L. and Solodilov, L.N., The Geological Structure of Muscovia: Deep Structure and Tectonics, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 1997, vol. 72, no. 5, pp. 6–17.Google Scholar
  34. Kostyuchenko, S.L., Egorkin, A.V., and Solodilov, L.N., Tectonic Model of Precambrian of the Moscow Syneclise Based on the Results of Regional Investigations, Razved. Okhr. Nedr, 1995, no. 5, pp. 8–12.Google Scholar
  35. Kostyuchenko, S.L., Egorkin, A.V., Solodilov, L.N., et al., Genetic Types of Precambrian Rifts in the Mezen-Lower Volga Divergent Belt of the East European Platform Based on the Results of Deep Investigations, Razved. Okhr. Nedr, 1996, no. 4–5, pp. 46–53.Google Scholar
  36. Krogh, T., A Low Contamination Method for Hydrothermal Decomposition of Zircon and Extraction of U and Pb for Isotopic Age Determination, Geochim. Cosmochim. Acta, 1973. vol. 37, pp. 485–494.CrossRefGoogle Scholar
  37. Kuz’menko, Yu.T. and Shik, S.M., A Refined Stratigraphic Scheme of Riphean Rocks in Central European Russia (Eastern Part of the Orsha Depression and Kresttsy and Soligalich Aulacogens, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2006, vol. 81, no. 2, pp. 29–39.Google Scholar
  38. Ludwig, K.R., Pb Dat for MS-DOS, Version 1.21. U.S. Geol. Survey Open-File Rept. 88-542, 1991.Google Scholar
  39. Ludwig, K.R., ISOPLOT/EX (Version 2.00). A Geochronological Toolkit for Microsoft Excel, Berkeley Geochron Center, 1999, Spec. Publ. no. 1a.Google Scholar
  40. Makhnach, A.S., Veretennikov, N.V., Shkuratov, V.I., et al., Stratigraphy of Upper Proterozoic Rocks in Belarus, Izv. Akad. Nauk SSSR, Ser. Geol., 1975, no. 3, pp. 90–102.Google Scholar
  41. Makhnach, A.S., Veretennikov, N.V., Shkuratov, V.I., and Bordon, V.E., Rifei i vend Belorussii (The Riphean and Vendian of Belarus), Minsk: Nauka Tekhnika, 1976.Google Scholar
  42. Nagornyi, M.A., Tektonika Volyno-Srednerusskoi sistemy progibov (Tectonics of the Volyn-Mid-Russian Depression System), Minsk: Nauka Tekhnika, 1990.Google Scholar
  43. Nagovitsin, K.E., Microfossils and Stratigraphy of the Upper Riphean in the Southwestern Siberian Craton, PhD (Geol.-Miner.) Dissertation, Novosibirsk: Inst. Geol. Geofiz. Sib. Otd. Akad. Nauk, 2001.Google Scholar
  44. Nikolaev, V.G, Tectonic Evolution of the Moscow Syneclise in the Riphean, Geotektonika, 1999, vol. 33, no. 6, pp. 59–65 [Geotectonics (Engl. Transl.), 1999, vol. 33, no. 6, pp. 474–479].Google Scholar
  45. Osadochnye basseiny: metodika izucheniya, stroenie i evolyutsiya (Sedimentary Basins: Investigation Method, Strucure, and Evolution), Leonov, Yu.G. and Volozh, Yu.A., Eds., Moscow: Nauchnyi Mir, 2004.Google Scholar
  46. Ostrovskii, M.O., The Main Stages of Structure Formation in Central Regions of the East European Craton in the Precambrian and Paleozoic, DSc (Geol.-Miner.) Dissertation, Moscow: Mosk. Geol. Razved. Inst., 1974.Google Scholar
  47. Ostrovskii, M.I., Zolotov, A.N., Ivanova, T.D., and Sarkisov, Yu.M., The Riphean-Early Paleozoic Stage of Sedimentary Cover Formation in the Central and Northern Regions of the East European Craton, Otech. Geol., 1975, no. 10, pp. 87–97.Google Scholar
  48. Pyatiletov, V.G., Late Precambrian Microfossils of the Uchur-Maya Region, in Pozdnii dokembrii i rannii paleozoi Sibiri. Vend i rifei (Late Precambrian and Late Paleozoic in Siberia: Vendian and Riphean), Novosibirsk: Izd. Inst. Geol. Geokhim. Sib. Otd. Akad. Nauk SSSR, 1988, pp. 47–94.Google Scholar
  49. Razlomy zemnoi kory Belarusi (Faults in the Earth’s Crust of Belarus), Aizberg, R.E., Ed., Minsk: Krasiko-Print, 2007.Google Scholar
  50. Reading, H.G., Collinson, J.D., Allen, P.A., et al., Sedimentation Environments, New York: Elsevier, 1978. Translated under the title Obstanovki osadkonakopleniya i fatsii, Moscow: Mir, 1990, vol. 1.Google Scholar
  51. Scheidegger, R.F., Kulm, L.D., and Piper, D.J.W., Heavy Mineralogy of Unconsolidated Sands in Northeastern Pacific Sediments: Leg 18 DSDP, Abstracts of Papers, Proc. Deep Sea Drill. Proj., Init. Rep. Washington: U.S. Govt. Print. Office, 1973, vol. 18, pp. 877–887.Google Scholar
  52. Shatskii, N.S., Depressions of the Donetsk Type, in Izbrannye trudy (Selected Works), Moscow: Nauka, 1964, vol. II, pp. 544–553.Google Scholar
  53. Shutov, V.D., Mineral’nye paragenezy grauvakkovykh kompleksov (Mineral Assemblages of the Graywacke Complexes), Moscow: Nauka, 1975.Google Scholar
  54. Simanovich, I.M., Kvarts peschanykh porod (Quartz of Sedimentary Rocks), Moscow: Nauka, 1974.Google Scholar
  55. Simanovich, I.M., Mineralogy and Petrography of Riphean Rocks in the Moscow Graben, Litol. Polezn. Iskop., 2000, vol. 35, no. 5, pp. 25–37 [Lithol. Miner. Resour. (Engl. Transl.), 2000, vol. 35, no. 5, pp. 475–483].Google Scholar
  56. Sklyarov, E.V., Mazukabzov, A.M., and Mel’nikov, A.I., Kompleksy metamorficheskikh yader kordil’erskogo tipa (Metamorphic Core Complexes of the Cordilleras Type), Novosibirsk: Izd. Sib. Otd. Ross. Akad. Nauk, Nauchno-Issled. Tsentr Ob”ed. Inst. Geol. Geokhim. Mineral., 1997.Google Scholar
  57. Stacey, J.S. and Kramers, J.D., Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model, Earth Planet. Sci. Lett., 1975, vol. 26, no. 2. pp. 207–221.CrossRefGoogle Scholar
  58. Valeev, R.I., Klubov, V.N., and Ostrovskii, M.I., Comparative Analysis of the Formation Conditions and Spatial Distribution of Aulacogens in the Russian Platform, Otech. Geol., 1969, no. 4, pp. 58–67.Google Scholar
  59. Valeev, R.N., Avlakogeny Vostochno-Evropeiskoi platformy (Aulacogens in the East European Craton), Moscow: Nedra, 1978.Google Scholar
  60. Veis, A.F., Riphean and Vendian Microfossils in the Uchur-Maya and Turukhansk Regions of Siberia, Izv. Akad. Nauk SSSR, Ser. Geol., 1988, no. 5, pp. 47–64.Google Scholar
  61. Veis, A.F. and Vorob’eva, N.G., Microfossils of the Siberian Hypostratotype of Riphean (Omakhta, Kandyk, and Ust-Kirba Microbiotas), Stratigr. Geol. Korrelyatsiya, 2002, vol. 10, no. 1, pp. 27–54.Google Scholar
  62. Veretennikov, N.V., Makhnach, A.S., Laptsevich, A.G., and Shkuratov, V.I., Stratigraphic Scheme of Riphean Rocks in Belarus, Litosfera, 2005, vol. 22, no. 1, pp. 27–35.Google Scholar
  63. Vladimirova, T.I., Kapustin, I.N., Orlov, V.I., and Fedorov, D.L., Ob”yasnitel’naya zapiska k gipsometricheskoi karte poverkhnosti kristallicheskogo fundamenta tsentral’noi i severnoi chasti Vostochno-Evropeiskoi platformy masshtaba 1: 2500000 (Explanatory Note to the Hypsometric Map of the Crystalline Basement Surface in the Central and Northern Parts of the East European Craton, Scale 1: 2500000), St. Petersburg: Vseross. Geol. Razved. Inst., 2001.Google Scholar
  64. Zen, E. and Hammarstrom, J.M., Magmatic Epidote and Its Petrologic Significance, Geology, 1984, vol. 12, pp. 515–518.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Geological InstituteRussian Academy of Sciences (GIN RAN)MoscowRussia

Personalised recommendations