Skip to main content
Log in

Predictive Model of the Relationship of the Antiradical Activity and the Ionization Potential of Molecules and Ions of Flavonoids

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript


A relationship between the antiradical activity of flavonoids and the molecular descriptors related to the mechanism of their antiradical action was determined by single-variable linear regression analysis in the form of a semiempirical single-variable linear equation. The predictive ability of the derived model was evaluated using a test sample; the average error of approximation was no more than 8.5%. The obtained descriptor–activity relationship underlies the prediction of the antiradical properties of flavonoids and their similar structures in aqueous solutions with a physiological pH value of the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others


  1. Vermerris, W. and Nicolson, R., Phenolic Compound Biochemistry, Dodrecht: Springer, 2006, p. 276.

    Google Scholar 

  2. Kostyuk, V.A. and Potapovich, A.I., Bioradikaly i bioantioksidanty (Bioradicals and Bioantioxidants), Minsk: Belarus State University, 2004, p. 179.

  3. Alov, P., Tsakovska, I., and Pajeva, I., Curr. Top. Med. Chem., 2015, vol. 15, p. 85.

    Article  CAS  Google Scholar 

  4. Lagunin, A., Zakharov, A., Filimonov, D., and Poroikov, V., Mol. Inf., 2011, vol. 30, nos. 2–3, p. 241.

    Article  CAS  Google Scholar 

  5. Javan, A.J., Food Chem. 2014, vol. 165, p. 451.

    Article  CAS  Google Scholar 

  6. Vaganek, A., Rimarčik, J., Dropkova, K., Lengyel, J., and Klein, E., Comput. Theor. Chem., 2014, vol. 1050, p. 31.

    Article  CAS  Google Scholar 

  7. Rabinovich, V.A. and Khavin, Z.Ya., Kratkii khimicheskii spravochnik (Short Chemical Dictionary), Leningrad: Khimiya, 1991, p. 432.

  8. Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, Burlington: Elsevier, 2003, p. 608.

    Google Scholar 

  9. Shlyapintokh, V.Ya., Karpukhin, O.N., Postnikov, L.M., Zakharov, I.P., Vichutinskii, A.A., and Tsepalov, V.F., Khemilyuminestsentnye metody issledovaniya medlennykh khimicheskikh protsessov (Chemiluminescence Methods of Study of Slow Chemical Processes), Moscow: Nauka, 1966, p. 300.

  10. Stefek, M., Kyselova, Z., Rackova, L., and Krizanova, L., Biochim. Biophys. Acta, 2005, vol. 1741, p. 183.

    Article  CAS  Google Scholar 

  11. Rackova, L., Stefek, M., and Majekova, M., Redox Rep., 2002, vol. 7, p. 207.

    Article  CAS  Google Scholar 

  12. Belyakov, V.A., Vasil’ev, R.F., and Fedorova, G.F., Kinet. Catal., 2004, vol. 45, no. 3, p. 329.

    Article  CAS  Google Scholar 

  13. Yuzhakov, V.I. and Pashchenko, V.Z., Kvantovaya Elektron., 1980, vol. 7, no. 3, p. 613.

    CAS  Google Scholar 

  14. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., and Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J. Gaussian 09, Revision B.01 Gaussian, Wallingford, 2010.

  15. Weinberg, D.R., Gagliardi, C.J., Hull, J.F., Murphy, C.F., Kent, C.A., Westlake, B., Paul, A., Ess, D.H., McCafferty, G.D., and Meyer, T.J., Chem. Rev., 2007, vol. 107, no. 11, p. 5004.

    Article  Google Scholar 

  16. Belaya, N.I, Belyi, A.V., Zarechnaya, O.M., Shcherbakov, I.N., Mikhal’chuk, V.M., and Doroshkevich, V.S., Russ. J. Gen. Chem., 2017, vol. 87, no. 4, p. 690.

    Article  CAS  Google Scholar 

  17. Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, no. 8, p. 2999.

    Article  CAS  Google Scholar 

  18. Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., and Skiff, W.M., J. Am. Chem. Soc., 1992, vol. 114, no. 25, p. 10024.

    Article  CAS  Google Scholar 

  19. Marvin 18.14.0. ChemAxon.

  20. Elyashberg, M., Williams, A., and Blinov, K., Contemporary Computer-Assisted Approaches to Molecular Structure Elucidation, Cambridge: RSC, 2012, p. 469.

    Google Scholar 

  21. Alekseev, A.V., Proskurnina, E.V., and Vladimirov, Yu.A., Moscow Univ. Chem. Bull., 2012, vol. 67, no. 3, p. 127.

    Article  Google Scholar 

  22. Veprintsev, T.L., Naumov, V.V., and Trofimov, A.V., Butlerov. Soobshch., 2011, vol. 25, no. 5, p. 96.

    Google Scholar 

  23. Vasil’ev, R.F., Veprintsev, T.L., Dolmatova, L.S., Naumov, V.V., Trofimov, A.V., and Tsaplev, Yu.B., Kinet. Catal., 2014, vol. 55, no. 2, p. 148.

    Article  Google Scholar 

  24. Roginskii, V.A., Fenol’nye antioksidanty. Reaktsionnaya sposobnost' i effektivnost' (Phenolic Antioxidants. Reactivity and Efficiency), Moscow: Nauka, 1988, p. 247.

  25. Galano, A., Mazzone, G., Alvarez-Diduk, R., Marino, T., Alvarez-Idaboy, J.R., and Russo, N., Annu. Rev. Food Sci. Technol., 2016, vol. 7, p. 335.

    Article  CAS  Google Scholar 

  26. Mazzone, G., Russo, N., and Toscano, M., Comput. Theor. Chem., 2016, vol. 1077, p. 39.

    Article  CAS  Google Scholar 

  27. Litwinienko, G. and Ingold, K.U., Acc. Chem. Res., 2007, vol. 40, no. 3, p. 222.

    Article  CAS  Google Scholar 

  28. Volkov, V.A. and Misin, V.M., Kinet. Catal., 2015, vol. 56, no. 1, p. 43.

    Article  CAS  Google Scholar 

  29. Mazzone, G., Russo, N., and Toscano, M., Comput. Theor. Chem., 2016, vol. 1077, p. 39.

    Article  CAS  Google Scholar 

  30. Belaya, N.I., Belyi, A.V., Zarechnaya, O.M., Shcherbakov, I.N., and Doroshkevich, V.S., Russ. J. Gen. Chem., 2018, vol. 88, no. 7, p. 1351.

    Article  CAS  Google Scholar 

  31. Marković, Z., Đorović, J., and Petrović, Z.D., J. Mol. Model., 2015, vol. 21, p. 293.

    Article  Google Scholar 

  32. Pérez-González, A., Galano, A., and Alvarez-Idaboy, J.R., New J. Chem., 2014, vol. 38, p. 2639.

    Article  Google Scholar 

  33. Chernikov, D.A., Pal’shin, V.A., Bazhenov, B.N., and Safronov, A.V., Izv. Vyssh. Uchebn. Zaved.,Khim. Khim. Tekhnol., 2012, vol. 55, no. 8, p. 43.

    CAS  Google Scholar 

  34. Derffel’, K., Statistika v analiticheskoi khimii (Statistics in Analytical Chemistry), Moscow: Mir, 1994, p. 268.

Download references


The DFT calculations were performed at the High-Performance Computations Center for Shared Use of Scientific Equipment, Southern Federal University, Rostov-on-Don, Russia.

Author information

Authors and Affiliations


Corresponding author

Correspondence to N. I. Belaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Abbreviation: ARA, antiradical activity, APOO, 2-amidinopropane-2-peroxyl radical; AAPH, 2,2'-azo-bis-(2-amidinopropane) dihydrochloride; DFT, density functional theory; ET–PT, electron transfer–proton transfer; FlavOH, flavonoids; Rd6G, Rhodamine 6G; CL, chemiluminescence; QSAR/QSPR, quantitative structure–activity/property relationships; SPLET, sequential proton loss electron transfer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belaya, N.I., Belyi, A.V. & Shcherbakov, I.N. Predictive Model of the Relationship of the Antiradical Activity and the Ionization Potential of Molecules and Ions of Flavonoids. Kinet Catal 61, 360–368 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: