Skip to main content

Mesolevel Bifunctional Catalysis

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The review is focused on requirements for technical bifunctional catalysts containing, in addition to a metal phase and an acid support (zeolite), various components required for providing an effective heat and mass transfer and chemical or mechanical functions. Some catalytic reactions in which these components (e.g., a binder for extrusion) affect catalytic properties are discussed. A strategy of introducing metals into a shaped catalyst by deposition either on a zeolite or a binder, which affects the distance between the sites of various types and the catalytic properties of the resulting extrudates, is described.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. 1

    Slin’ko, M.G., Kinet. Catal., 1969, vol. 10, p. 12.

    Google Scholar 

  2. 2

    Vlachos, D.G., AIChE J., 2012, vol. 58, p. 1314.

    Article  CAS  Google Scholar 

  3. 3

    Maestri, M., Chem. Commun., 2017, vol. 53, p. 10 244.

    Article  Google Scholar 

  4. 4

    Mitchell, S., Michels, N.-L., and Perez-Ramirez, J., Chem. Soc. Rev., 2013, vol. 42, p. 6094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Murzin, D.Y., Engineering Catalysis, Berlin: Walter de Gruyter, 2013

    Book  Google Scholar 

  6. 6

    Schüth, F. and Hesse, M., Catalyst Forming. Handbook of Heterogeneous Catalysis, Ertl, G., Knözinger, H., Schüth, F., and Weitkamp, J., Eds., Weinheim: Wiley, 2008.

    Google Scholar 

  7. 7

    Prokof’ev, V., Kinet. Catal., 2012, vol. 53, p. 616.

    Article  CAS  Google Scholar 

  8. 8

    Palmqvist, L., Lyckfeld, O., Carlström, E., Davouts, P., Kauppi, A., and Holmberg, K., Colloids Surf., A, 2006, vol. 274, p. 100.

    Article  CAS  Google Scholar 

  9. 9

    Yalçın, T., Alemdar, A., Ece, Ö.I., and Güngör, N., Mater. Lett., 2002, vol. 57, p. 420.

    Article  Google Scholar 

  10. 10

    Gordina, N.E., Prokof’ev, V.Y., and Il’in, A.P., Glass. Ceram., 2005, vol. 62, p. 282.

    Article  CAS  Google Scholar 

  11. 11

    Zhou, Z., Scales, P.J., and Boger, D.V., Chem. Eng. Sci., 2001, vol. 56, p. 2901.

    Article  CAS  Google Scholar 

  12. 12

    Zacahua-Tlacuatl, G., Perez-Gonzalez, J., Castro-Arelanno, J., and Balmori-Ramirez, H., Appl. Rheol., 2010, vol. 20, p. 1.

    Google Scholar 

  13. 13

    Olanrewaju, K.O., Bae, T.-H., Nair, S., and Breedveld, V., Rheol. Acta, 2013, vol. 53, p. 133.

    Article  CAS  Google Scholar 

  14. 14

    Liu, X., Mäki-Arvela, P., Aho, A., Vajglova, Z., Gun’ko, V., Heinmaa, I., Kumar, N., Eränen, K., Salmi, T., and Murzin, D.Yu., Molecules, 2018, vol. 23, p. 946.

    Article  CAS  Google Scholar 

  15. 15

    Müller, P., Russell, A., and Tomas, J., Chem. Eng. Sci., 2015, vol. 126, p. 204.

    Article  CAS  Google Scholar 

  16. 16

    Draper, O., Blackburn, S., Dolman, G., Smalley, K., and Griffiths, A., J. Mater. Process. Technol., 1999, vols. 92–93, p. 141.

    Article  Google Scholar 

  17. 17

    Kong, X. and Liu, J., PLOS One, 2014, vol. 9, p. e101744.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Lee, Y.J., Kim, Y.-W., Viswanadham, N., Jun, K.-W., and Bae, J.W., Appl. Catal., A, 2010, vol. 374, p. 18.

  19. 19

    Pérez-Uriarte, P., Gamero, M., Ateka, A., Diaz, M., Aguayo, A.T., and Bilbao, J., Ind. Eng. Chem. Res., 2016, vol. 55, p. 1513.

    Article  CAS  Google Scholar 

  20. 20

    Freiding, J., Patcas, F.-C., and Kraushaar-Czarnetzki, B., Appl. Catal., A, 2007, vol. 328, p. 210.

  21. 21

    Nieminen, V., Kangas, M., Salmi, T., and Murzin, D.Yu., Ind. Eng. Chem. Res., 2005, vol. 44, p. 471.

    Article  CAS  Google Scholar 

  22. 22

    Weisz, P.B., Adv. Catal., 1962, vol. 13, p. 137.

    CAS  Google Scholar 

  23. 23

    Akhmetov, S.A., Serikov, T.P., Kuzeev, I.R., and Bayazitov, M.I., Tekhnologiya i oborudovanie protsessov pererabotki nefti i gaza (Technology and Equipment for Oil and Gas Refining Processes), Akhmetov, S.A., Ed., St. Petersburg: Nedra, 2006.

    Google Scholar 

  24. 24

    Zschiesche, C., Himsl, D., Rakoczy, R., Reitzmann, A., Freiding, J., Wilde, N., and Gläser, R., Chem. Eng. Technol., 2018, vol. 41, p. 199.

    Article  CAS  Google Scholar 

  25. 25

    Batalha, N., Pinard, L., Bouchy, C., Guillon, E., and Guisnet, M., J. Catal., 2013, vol. 307, p. 122.

    Article  CAS  Google Scholar 

  26. 26

    Huybrechts, W., Vanbutsele, G., Houthoofd, K.J., Bertinchamps, F., Laxmi Narasimhan, C.S., Gaigneaux, E.M., Thybaut, J.W., Marin, G.B., Denayer, J.F.M., Baron, G.V., Jacobs, P.A., and Martens, J.A., Catal. Lett., 2005, vol. 100, p. 235.

    Article  CAS  Google Scholar 

  27. 27

    Zhang, M., Chen, Y., Wang, L., Zhang, Q., Tsang, C.-W., and Liang, C., Ind. Eng. Chem. Res., 2016, vol. 55, p. 6069.

    Article  CAS  Google Scholar 

  28. 28

    Kangas, M., Kubicka, D., Salmi, T., and Murzin, D.Yu., Top. Catal., 2010, vol. 53, p. 1172.

    Article  CAS  Google Scholar 

  29. 29

    Kubicka, D., Kumar, N., Venäläinen, T., Karhu, H., Kubickova, I., Österholm, H., and Murzin, D.Yu., J. Phys. Chem. B, 2006, vol. 110, p. 4937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    ten Dam, J., Ramanathan, A., Djanashvili, K., Kapteijn, F., and Hanefeld, U., RSC Adv., 2017, vol. 7, p. 12 041.

    Article  Google Scholar 

  31. 31

    Plösser, J., Lucas, M., Wärnå, J., Salmi, T., Murzin, D.Yu., and Claus, P., Org. Process Res. Dev., 2016, vol. 20, p. 1647.

    Article  CAS  Google Scholar 

  32. 32

    Plößer, J., Lucas, M., and Claus, P., J. Catal., 2014, vol. 320, p. 189.

    Article  CAS  Google Scholar 

  33. 33

    Nie, Y., Niah, W., Jaenicke, S., and Chuah, G.-K., J. Catal., 2007, vol. 248, p. 1.

    Article  CAS  Google Scholar 

  34. 34

    Mertens, P., Verpoort, F., Parvulescu, A.-N., and De Vos, D., J. Catal., 2006, vol. 243, p. 7.

    Article  CAS  Google Scholar 

  35. 35

    Iosif, F., Coman, S., Parvulescu, V., Grange, P., Delsarte, S., De Vos, D., and Jacobs, P., Chem. Commun., 2004, p. 1292.

  36. 36

    Borodina, I.B., Ponomareva, O.A., Fajula, F., Bousquet, J., and Ivanova, I.I., Microporous Mesoporous Mater., 2007, vol. 105, p. 181.

    Article  CAS  Google Scholar 

  37. 37

    Kumar, S.A., John, M., Pai, S.M., Ghosh, S., and Newalkar, B.L., Mol. Catal., 2017, vol. 4422, p. 27.

    Article  CAS  Google Scholar 

  38. 38

    Cho, H.J., Chang, C.-C., and Fan, W., Green Chem., 2014, vol. 16, p. 3428.

    Article  CAS  Google Scholar 

  39. 39

    Derle, S.N. and Parikh, P.A., Biomass Convers. Biorefin., 2014, vol. 4, p. 293.

    Article  CAS  Google Scholar 

  40. 40

    Cho, H.J., Kim, D., Li, J., Su, D., and Xu, B., J. Am. Chem. Soc., 2018, vols. 140–411, p. 3514.

  41. 41

    Fernandes, L.D., Monteiro, J.L.F., Sousa-Aguiar, E.F., Martinez, A., and Corma, A., J. Catal., 1998, vol. 177, p. 363.

    Article  CAS  Google Scholar 

  42. 42

    Kumar, M., Saxena, A.K., Negi, B.S., and Viswanadham, N., Catal. Today, 2008, vol. 130, p. 501.

    Article  CAS  Google Scholar 

  43. 43

    Proeto, G., Zecevic, J., Friedrich, H., de Jong, K.P., and de Jongh, P.E., Nat. Mater., 2013, vol. 12, p. 34.

    Article  CAS  Google Scholar 

  44. 44

    Zecevic, J., Vanbutsele, G., de Jong, K.P., and Martents, J.A., Nature, 2015, vol. 528, p. 245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Gläser, R., Nature, 2015, vol. 528, p. 197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Vajglová, Z., Kumar, N., Peurla, M., Peltonen, J., and Murzin, D.Yu., Catal. Sci. Technol., 2018, vol. 8, p. 6150.

    Article  Google Scholar 

  47. 47

    Vajglova, Z., Kumar, N., Mäki-Arvela, P., Eränen, K., Peurla, M., Hupa, L., Nurmi, M., Toivakka, M., and Murzin, D.Yu., Ind. Eng. Chem. Res., 2019, vol. 58, p. 18 084.

    Article  CAS  Google Scholar 

  48. 48

    Vajglova, Z., Kumar, N., Peurla, M., Hupa, L., Semikin, K., Sladkovskiy, D., and Murzin, D.Yu., Ind. Eng. Chem. Res., 2019, vol. 58, p. 10 875.

    Article  CAS  Google Scholar 

  49. 49

    Gutierrez-Acebo, E., Leroux, C., Chizallet, C., Schuurman, Y., and Bouchy, C., ACS Catal., 2018, vol. 8, p. 6035.

    Article  CAS  Google Scholar 

  50. 50

    Batalha, N., Pinard, L., Pouilloux, Y., and Guisnet, M., Catal. Lett., 2013, vol. 143, p. 58.

    Article  CAS  Google Scholar 

  51. 51

    Guisnet, M., Catal. Today, 2013, vol. 218, p. 123.

    Article  CAS  Google Scholar 

  52. 52

    Whiting, G.T., Chung, S.-H., Stosic, D., Chowdhury, A.D., van der Wal, L.I., Fu, D., Zecevic, J., Travert, A., Houben, K., Baldus, M., and Weckhuysen, B.M., ACS Catal., 2019, vol. 96, p. 4792.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Murzin.

Additional information

Translated by M. Timoshinina

Abbreviations: T-atoms: tetrahedral silicon, aluminum, or titanium atoms.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murzin, D.Y. Mesolevel Bifunctional Catalysis. Kinet Catal 61, 80–92 (2020). https://doi.org/10.1134/S0023158420010073

Download citation

Keywords:

  • bifunctional catalysis
  • mass transfer
  • catalyst grain
  • extrusion