Skip to main content
Log in

Influence of n-Butanol Addition on C3H3 Formation in n-Butane Combustion

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The effects of different n-butanol blending ratios (Rb) on the formation of propargyl radical (C3H3), an important benzene precursor, during the combustion of n-butanol/n-butane blends are studied. A detailed kinetic combustion model of n-butanol/n-butane is developed and the premixed n-butanol/n-butane flames are calculated at an equivalence ratio of 1.5, an initial pressure of 1.0 atm, and a temperature range from 800 to 2000 K in a perfectly stirred reactor (PSR), with Rb varying from 0 to 1.0. The results show that under the investigated conditions, the peak value of the mole fraction of C3H3 decreases non-linearly with the increase of Rb. Due to the interaction between combustion products of n-butane and n-butanol during the combustion process, the actual peak mole fraction of C3H3 is higher than the theoretical value. A rate of production (ROP) analysis reveals that the number of β-carbon atoms in the molecule of n-butane and n-butanol affects the efficiency of H-abstraction reactions in generating 2-butyl (sC4H9) and C4H8OH-3 (CH3–*CH–CH2–CH2–OH), which are the two major original sources of C3H3. For both n-butane and n-butanol, the main pathway of forming C3H3 from propene (C3H6) is basically the same, which is C3H6 → C3H5-a (symmetric allyl radical) → C3H4-a (allene) → C3H4-p (propyne) → C3H3. When Rb ranges from 0.4 to 0.6, the deviation degrees of the peak mole fraction of the involved C3 species reach a maximum, indicating that the interaction between the two fuels is the most significant. The non-linear decrease in the mole fraction of C3H3 can attribute to three reasons: (a) the increase of Rb promotes the increase of the conversion ratios of n-butane to sC4H9 and n-butanol to C4H8OH-3; (b) the contribution ratios of the reactions involved in the C3H5-a → C3H4-a → C3H4-p → C3H3 pathway decrease with increasing Rb; (c) C3H5-t (tertiary allyl radical) → C3H4-p → C3H3 is the secondary pathway for the formation of C3H3. With the increase of Rb, the dependence of C3H4-p on C3H5-t increases and the conversion ratio of C3H5-t to C3H4-p increases. This study investigates the non-linear decrease of the mole fraction of C3H3 by revealing the interactions between n-butanol and n-butane during the combustion, which can help better understand the effect of n-butanol on the formation of benzene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Jin, H., Cai, J., Wang, G., Wang, Y., Yang, J., Cheng, Zh., Yuan, W., and Qi, F., Combust. Flame, 2016, vol. 169, p. 154.

    Article  CAS  Google Scholar 

  2. Wu, F. and Law, C.K., Combust. Flame, 2013, vol. 160, no. 12, p. 2744.

    Article  CAS  Google Scholar 

  3. Sarathy, S.M., Thomson, M.J., Togbe, C., Dagaut, R., Halter, F., and Mounaim-Rousselle, C., Combust. Flame, 2009, vol. 156, no. 4, p. 852.

    Article  CAS  Google Scholar 

  4. Trindade, W.R.d.S. and Santos, R.G.d., Renewable Sustainable Energy Rev., 2017, vol. 69, p. 642.

    Article  Google Scholar 

  5. Elfasakhany, A., Renewable Sustainable Energy Rev., 2017, vol. 71, p. 404.

    Article  CAS  Google Scholar 

  6. Wei, H., Feng, D., Pan, M., Pan, J.P., Rao, X.K., and Gao, D., Appl. Energy, 2016, vol. 175, p. 346.

    Article  CAS  Google Scholar 

  7. Mack, J.H., Schler, D., Butt, R.H., and Dibble, R.W., Appl. Energy, 2016, vol. 165, p. 612.

    Article  CAS  Google Scholar 

  8. Yang, P.-M., Lin, Y.-C., Lin, K.C., Jhang, S.-R., Chen, S.C., Wang, C.-C., and Lin, Y.-C., Energy, 2015, vol. 90, p. 266.

    Article  CAS  Google Scholar 

  9. Rakopoulos, D.C., Rakopoulos, C.D., Giakoumis, E.G., Dimaratos, A.M., and Kuritsis, D.C., Energy Convers. Manage., 2010, vol. 51, no. 10, p. 1989.

    Article  CAS  Google Scholar 

  10. Vojtisek-Lom, M., Beranek, V., Mikuska, P., Krumal, K., Coufalik, P., Sikorova, J., and Topinka, J., Fuel, 2017, vol. 197, p. 407.

    Article  CAS  Google Scholar 

  11. Veshkini, A., Eaves, N.A., Dworkin, S.B., and Thomson, M.J., Combust. Flame, 2016, vol. 167, p. 335.

    Article  CAS  Google Scholar 

  12. Teini, P.D., Karwat, D.M.A., and Atreya, A., Combust. Flame, 2011, vol. 158, no. 10, p. 2045.

    Article  CAS  Google Scholar 

  13. Dobbins, R.A., Fletcher, R.A., and Chang, H.C., Combust. Flame, 1998, vol. 115, no. 3, p. 285.

    Article  CAS  Google Scholar 

  14. Dias, V., Katshiatshia, H.M., and Jeanmart, H., Combust. Flame, 2014, vol. 161, no. 9, p. 2297.

    Article  CAS  Google Scholar 

  15. McEnally, C.S. and Pfefferle, L.D., Proc. Combust. Inst., 2007, vol. 31, no. 1, p. 603.

    Article  CAS  Google Scholar 

  16. Sarathy, S.M., Vranckx, S., Yasunaga, K., Mehl, M., Obwald, P., Metcalfe, W.K., Westbrook, Ch.K., Pitz, W.J., Kohse-Hoinghaus, K., Fernandes, R.X., and Curran, H.J., Combust. Flame, 2012, vol. 159, no. 6, p. 2028.

    Article  CAS  Google Scholar 

  17. Stranic, I., Chase, D.P., Harmon, J.T., Yang, Sh., Davidson, D.F., and Hanson, R.K., Combust. Flame, 2012, vol. 159, no. 2, p. 516.

    Article  CAS  Google Scholar 

  18. Dagaut, P., Sarathy, S.M., and Thomson, M.J., Proc. Combust. Inst., 2009, vol. 32, no. 1, p. 229.

    Article  CAS  Google Scholar 

  19. Cai, J., Zhang, L., Zhang, F., Wang, Z., Cheng, Zh., Yuan, V., and Qi, F., Energy Fuels, 2012, vol. 26, no. 9, p. 5550.

    Article  CAS  Google Scholar 

  20. Moss, J.T., Berkowitz, A.M., Oehlschlaeger, M.A., Biet, J., Warth, V., Glaude, P., and Battin-Leclers, F., J. Phys. Chem. A, 2008, vol. 112, no. 43, p. 10843.

    Article  CAS  PubMed  Google Scholar 

  21. Togbe, C., Mze-Ahmed, A., and Dagaut, P., Energy Fuels, 2010, vol. 24, p. 5244.

    Article  CAS  Google Scholar 

  22. Liu, W., Kelley, A.P., and Law, C.K., Proc. Combust. Inst., 2011, vol. 33, no. 1, p. 995.

    Article  CAS  Google Scholar 

  23. Grana, R., Frassoldati, A., Faravelli, T., Niemann, U., Ranzi, E., Seiser, R., Cattolica, R., and Seshadri, K., Combust. Flame, 2010, vol. 157, no. 11, p. 2137.

    Article  CAS  Google Scholar 

  24. Heufer, K.A., Fernandes, R.X., Olivier, H., Beeckmann, J., Rohl, O., and Peters, N., Proc. Combust. Inst., 2011, vol. 33, no. 1, p. 359.

    Article  CAS  Google Scholar 

  25. Veloo, P.S., Wang, Y.L., Egolfopoulos, F.N., and Westbrook, Ch.K., Combust. Flame, 2010, vol. 157, no. 10, p. 1989.

    Article  CAS  Google Scholar 

  26. Weber, B.W., Kumar, K., Zhang, Y., and Sung, C.-J., Combust. Flame, 2011, vol. 158, no. 5, p. 809.

    Article  CAS  Google Scholar 

  27. Wang, H. and Frenklach, M., Combust. Flame, 1997, vol. 110, no. 1, p. 173.

    Article  CAS  Google Scholar 

  28. Appel, J., Bockhorn, H., and Frenklach, M., Combust. Flame, 2000, vol. 121, no. 1, p. 122.

    Article  CAS  Google Scholar 

  29. Raj, A., Prada, I.D.C., Amer, A.A., and Chung, S.H., Combust. Flame, 2012, vol. 159, no. 2, p. 500.

    Article  CAS  Google Scholar 

  30. Wang, Y., Raj, A., and Chung, S.H., Combust. Flame, 2013, vol. 160, no. 9, p. 1667.

    Article  CAS  Google Scholar 

  31. Slavinskaya, N.A., Riedel, U., Dworkin, S.B., and Thomson, M.J., Combust. Flame, 2012, vol. 159, no. 3, p. 979.

    Article  CAS  Google Scholar 

  32. Slavinskaya, N.A. and Frank, P., Combust. Flame, 2009, vol. 156, no. 9, p. 1705.

    Article  CAS  Google Scholar 

  33. Marchal, C., Delfau, J.-L., Vovelle, C., Moreac, G., Mounai-Rousselle, C., and Mauss, F., Proc. Combust. Inst., 2009, vol. 32, no. 1, p. 753.

    Article  CAS  Google Scholar 

  34. Jin, H., Frassoldati, A., Wang, Y., Zhang, X., Zeng, M., Li, Y., Qi, F., Cuoci, A., and Faravelli, T., Combust. Flame, 2015, vol. 162, no. 5, p. 1692.

    Article  CAS  Google Scholar 

  35. Raj, A., Sander, M., Janardhanan, V., and Kraft, M., Combust. Flame, 2010, vol. 157, no. 3, p. 523.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the National Natural Science Foundation of China (51506011, 51776089), the Natural Science Foundation of Jiangsu Province of China (BK 20160406), the Jiangsu Province Project of Six Talent Summit (JXQC-001), and the Jiangsu Government Scholarship for Overseas Studies (JS-2016-169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Li.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Xu, G., Zhao, Y. et al. Influence of n-Butanol Addition on C3H3 Formation in n-Butane Combustion. Kinet Catal 60, 8–20 (2019). https://doi.org/10.1134/S0023158419010099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158419010099

Keywords:

Navigation