Kinetics and Catalysis

, Volume 60, Issue 1, pp 37–43 | Cite as

The Molecular-Kinetic Approach to Hydrolysis of Boron Hydrides for Hydrogen Production

  • B. Coşkuner FilizEmail author
  • A. Kantürk Figen


In this study, Langmuir–Hinshelwood and Michaelis–Menten kinetic models are applied to describe the kinetic behaviour of the Co–B catalyst in the hydrolysis of 0.12 M aqueous solutions of boron hydrides at temperatures from 22 to 60°C. Boron hydrides are selected as sodium borohydride (NaBH4, 10 wt % NaOH) and ammonia borane (NH3BH3). Based on the Langmuir–Hinshelwood kinetic approach, it is found that under the same reaction conditions the NaBH4–Co–B catalyst interaction is more effective than that of the NH3BH3–Co–B. According to the Langmuir–Hinshelwood model, apparent activation energies (Ea) for the hydrolysis of NaBH4 and NH3BH3 over Co–B catalysts are calculated to be 45.38 and 57.37 kJ/mol, respectively.


boron hydrides hydrolysis Co–B catalyst Langmuir–Hinshelwood Michaelis–Menten 



The authors would like to thank the Yildiz Technical University Research Foundation (Project no. 2012-07-01-GEP01) for its financial support.


  1. 1.
    Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., and Hyde, E.K., J. Amer. Chem. Soc., 1953, vol. 75, no. 1, p. 215.CrossRefGoogle Scholar
  2. 2.
    Retnamma, R., Novais, A.Q., and Rangel, C.M., Int. J. Hydrogen Energy, 2011, vol. 36, no. 16, p. 9772.CrossRefGoogle Scholar
  3. 3.
    Fernandes, R., Patel, N., Miotello, A., Jaiswal, R., and Kothari, D.C., Int. J. Hydrogen Energy, 2012, vol. 37, no. 3, p. 2397.CrossRefGoogle Scholar
  4. 4.
    Abo-Hamed, E.K., Pennycook, T., Vaynzof, Y., Toprakcioglu, C., Koutsioubas, A., and Scherman, O.A., Small, 2014, vol. 10, no. 15, p. 3145.CrossRefGoogle Scholar
  5. 5.
    Sun, D., Mazumder, V., Metin, O., and Sun, S., ACS Nano, 2011, vol. 5, no. 8, p. 6458.CrossRefGoogle Scholar
  6. 6.
    Xu, Q. and Chandra, M., J. Power Sources, 2006, vol. 163, no. 1, p. 364.CrossRefGoogle Scholar
  7. 7.
    Metin, O., Mazumder, V., Ozkar, S., and Sun, S., J. Amer. Chem. Soc., 2010, vol. 132, no. 5, p. 1468.CrossRefGoogle Scholar
  8. 8.
    Yamada, Y., Yano, K., Xu, Q., and Fukuzumi, S., J. Phys. Chem. C, 2010, vol. 114, no. 39, p. 16456.CrossRefGoogle Scholar
  9. 9.
    Wu, C., Wu, F., Bai, Y., Yi, B., and Zhang, H., Mater. Lett., 2005, vol. 59, no. 14, p. 1748.CrossRefGoogle Scholar
  10. 10.
    Ozerova, A.M., Simagina, V.I., Komova, O.V., Netskina, O.V., Odegova, G.V., Bulavchenko, O.A., and Rudina, N.A., J. Alloy Compd., 2012, vol. 513, p. 266.CrossRefGoogle Scholar
  11. 11.
    Cho, K.W. and Kwon, H.S., Catal. Today, 2007, vol. 120, no. 3, p. 298.CrossRefGoogle Scholar
  12. 12.
    Sahiner, N., Ozay, O., Inger, E., and Aktas, N., Appl. Catal., B, 2011, vol. 102, no. 1, p. 201.CrossRefGoogle Scholar
  13. 13.
    Qiu, F.Y., Wang, Y.J., Wang, Y.P., Li, L., Liu, G., Yan, C., and Yuan, H.T., Catal. Today, 2011, vol. 170, no. 1, p. 64.CrossRefGoogle Scholar
  14. 14.
    Groven, L.J., Pfeil, T.L., and Pourpoint, T.L., Int. J. Hydrogen Energy, 2013, vol. 38, no. 15, p. 6377.CrossRefGoogle Scholar
  15. 15.
    Simagina, V.I., Komova, O.V., Ozerova, A.M., Netskina, O.V., Odegova, G.V., Kellerman, D.G., and Ishchenko, A.V., Appl. Catal., A, 2011, vol. 394, no. 1, p. 86.Google Scholar
  16. 16.
    Kaya, M., Zahmakiran, M., Özkar, S., and Volkan, M., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 8, p. 3866.CrossRefGoogle Scholar
  17. 17.
    Liu, B.H. and Li, Z.P., J. Power Sources, 2009, vol. 187, no. 2, p. 527.CrossRefGoogle Scholar
  18. 18.
    Zhang, J.S., Delgass, W.N., Fisher, T.S., and Gore, J.P., J. Power Sources, 2007, vol. 164, no. 2, p. 772.CrossRefGoogle Scholar
  19. 19.
    Hung, A.J., Tsai, S.F., Hsu, Y.Y., Ku, J.R., Chen, Y.H., and Yu, C.C., Int. J. Hydrogen Energy, 2008, vol. 33, no. 21, p. 6205.CrossRefGoogle Scholar
  20. 20.
    Demirci, U.B. and Miele, P., C. R. Chim., 2014, vol. 17, no. 7, p. 707.CrossRefGoogle Scholar
  21. 21.
    Metin, Ö., Dinç, M., Eren, Z.S., and Özkar, S., Int. J. Hydrogen Energy, 2011, vol. 36, no. 18, p. 11528.CrossRefGoogle Scholar
  22. 22.
    Luo, Y.C., Liu, Y.H., Hung, Y., Liu, X.Y., and Mou, C.Y., Int. J. Hydrogen Energy, 2013, vol. 38, no. 18, p. 7280.CrossRefGoogle Scholar
  23. 23.
    Ye, W., Zhang, H., Xu, D., Ma, L., and Yi, B., J. Power Sources, 2007, vol. 164, no. 2, p. 544.CrossRefGoogle Scholar
  24. 24.
    Xu, Q. and Chandra, M., J. Alloy Compd., 2007, vol. 446, p. 729.CrossRefGoogle Scholar
  25. 25.
    Coşkuner, B., Figen, A.K., and Pişkin, S., React. Kinet. Mech. Catal., 2013, vol. 109, no. 2, p. 375.CrossRefGoogle Scholar
  26. 26.
    Andrieux, J., Demirci, U.B., and Miele, P., Catal. Today, 2011, vol. 170, p. 13.CrossRefGoogle Scholar
  27. 27.
    Levenspiel, O., Chemical Reaction Engineering, John Wiley & Sons, 1999.Google Scholar
  28. 28.
    Figen, A.K. and Coşkuner, B., Int. J. Hydrogen Energy, 2013, vol. 38, no. 6, p. 2824.CrossRefGoogle Scholar
  29. 29.
    Kantürk Figen, A., Coşkuner, B., Pişkin, M.B., Dere Özdemir, Ö. J Int Sci Publications: Mater, Methods & Techologies, 2013, vol. 7, no. 1, p. 43.Google Scholar
  30. 30.
    Zhang, Q., Wu, Y., Sun, X., and Ortega, J., Ind. Eng. Chem. Res., 2007, vol. 46, no. 4, p. 1120.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Chemical Engineering Department, Yildiz Technical UniversityIstanbulTurkey

Personalised recommendations