Kinetics and Catalysis

, Volume 60, Issue 1, pp 62–68 | Cite as

Solvent Effects in Epoxidation of Fatty Acid Methyl Esters with Hydrogen Peroxide over TS-1 Catalyst

  • A. L. Esipovich
  • A. S. BelousovEmail author
  • E. A. Kanakov
  • V. Yu. Mironova
  • A. E. Rogozhin
  • S. M. Danov
  • A. V. Vorotyntsev
  • D. A. Makarov


Solvent effects in epoxidation of fatty acid methyl esters (FAMEs) by hydrogen peroxide on a TS-1 heterogeneous catalyst is studied for the first time. It is found that the catalytic activity of TS-1 (titanium silicalite) is significantly affected by the polarity of the solvent and its proton-donor–acceptor properties. The highest activity and selectivity is ensured by the use of solvents that are not donors of hydrogen bonds. The best results were achieved when acetonitrile was used as a solvent: the conversion of FAMEs after 6 h was 77%, and the selectivity to epoxide was 61%.


fatty acid methyl esters epoxidation solvent effects titanium silicate 



The experimental study of the influence of the solvent effects was supported by the Russian Foundation for Basic Research (project 18-33-00550). XRD analysis of catalysts was financially supported within the framework of the Program of development of Flagship University of Russia for Nizhny Novgorod State Technical University n.a. R.E. Alekseev. Elemental analysis of catalysts was financially supported by The Ministry of Education and Science of the Russian Federation (state assignment 10.2326.2017/PP).


  1. 1.
    Mudiyanselage, A.Y., Yao, H., Viamajala, S., Varanasi, S., and Yamamoto, K., Ind. Eng. Chem. Res., 2015, vol. 54, p. 4060.CrossRefGoogle Scholar
  2. 2.
    Fairweather, N.T., Gibson, M.S., and Guan, H., Organometallics, 2015, vol. 34, p. 335.CrossRefGoogle Scholar
  3. 3.
    Tan, S.G. and Chow, W.S., Polym.-Plast. Technol. Eng., 2010, vol. 49, p. 1581.CrossRefGoogle Scholar
  4. 4.
    Wilde, N., Pelz, M., Gebhardt, S.G., and Gläser, R., Green Chem., 2015, vol. 17, p. 3378.CrossRefGoogle Scholar
  5. 5.
    Miao, Y.-X. and Liu, J.-P., Adv. Mater. Res., 2014, vols. 881–883, p. 140.CrossRefGoogle Scholar
  6. 6.
    Danov, S.M., Kazantsev, O.A., Esipovich, A.L., Belousov, A.S., Rogozhin, A.E., and Kanakov, E.A., Catal. Sci. Technol., 2017, vol. 7, p. 3659.CrossRefGoogle Scholar
  7. 7.
    Kholdeeva, O.A., Catal. Sci. Technol., 2014, vol. 4, p. 1869.CrossRefGoogle Scholar
  8. 8.
    Wu, Y., Liu, Q., Su, X., and Mi, Z., Front. Chem. China, 2008, vol. 3, p. 112.CrossRefGoogle Scholar
  9. 9.
    Ramachandran, C.E., Du, H., Kim, Y.J., Kung, M.C., Snurr, R.Q., and Broadbelt, L.J., J. Catal., 2008, vol. 253, p. 148.CrossRefGoogle Scholar
  10. 10.
    Palumbo, C., Tiozzo, C., Ravasio, N., Psaro, R., Carniato, F., Bisioa, C., and Guidotti, M., Catal. Sci. Technol., 2016, vol. 6, p. 3832.CrossRefGoogle Scholar
  11. 11.
    Hutchings, G.J., Lee, D.F., and Minihan, A.R., Catal. Lett., 1996, vol. 39 P. 83.CrossRefGoogle Scholar
  12. 12.
    Reichardt, C., Solvents and Solvent Effects in Organic Chemistry, Weinheim: Wiley-VCH, 1991.Google Scholar
  13. 13.
    Esipovich, A., Danov, S., Belousov, A., and Rogozhin, A., J. Mol. Catal. A: Chem., 2014, vol. 395, p. 225.CrossRefGoogle Scholar
  14. 14.
    Esipovich, A.L., Rogozhin, A.E., Belousov, A.S., Kanakov, E.A., and Danov, S.M., Fuel Process. Technol., 2018, vol. 173, p. 153.CrossRefGoogle Scholar
  15. 15.
    Esipovich, A., Rogozhin, A., Danov, S., Belousov, A., and Kanakov, E., Chem. Eng. J., 2018, vol. 339, p. 303.CrossRefGoogle Scholar
  16. 16.
    Lowell, S., Shields, J.E., Thomas, M.A., and Thommes, M., Characterization of Porous Materials and Powders: Surface Area, Pore Size and Density, Springer, 2004.CrossRefGoogle Scholar
  17. 17.
    Marcus, Y., Chem. Soc. Rev., 1993, vol. 22, p. 409.CrossRefGoogle Scholar
  18. 18.
    Lubbe, A.S., Kistemaker, J.C.M., Smits, E.J., and Feringa, B.L., Phys. Chem. Chem. Phys., 2016, vol. 18, p. 26725.CrossRefGoogle Scholar
  19. 19.
    Clerici, M.G. and Ingallina, P., J. Catal., 1993, vol. 140, p. 71.CrossRefGoogle Scholar
  20. 20.
    Corma, A., Esteve, P., and Martinez, A., J. Catal., 1996, vol. 161, p. 11.CrossRefGoogle Scholar
  21. 21.
    Wu, C., Wang, Y., Mi, Z., Xue, L., Wu, W., Min, E., Han, S., He, F., and Fu, S., React. Kinet. Catal. Lett., 2002, vol. 77, p. 73.CrossRefGoogle Scholar
  22. 22.
    Zhang, X., Wang, Y., and Xin, F., Appl. Catal., A, 2006, vol. 307, p. 222.Google Scholar
  23. 23.
    Wilde, N., Worch, C., Suprun, W., and Gläser, R., Micropor. Mesopor. Mater., 2012, vol. 164, p. 182.CrossRefGoogle Scholar
  24. 24.
    Oxley, J.C., Brady, J., Wilson, S.A., and Smith, J.L., J. Chem. Health Saf., 2012, vol. 19, p. 27.CrossRefGoogle Scholar
  25. 25.
    Cao, Y., Yu, H., Wang, H., and Peng, F., Catal. Commun., 2017, vol. 88, p. 99.CrossRefGoogle Scholar
  26. 26.
    Kropf, H. and Yazdanbachsch, M.R., Tetrahedron, 1974, vol. 30, p. 3455.CrossRefGoogle Scholar
  27. 27.
    Lebedev, N.N., Manakov, M.N., and Shvets, V.F., Teoriya khimicheskikh protsessov osnovnogo organicheskogo i neftekhimicheskogo sinteza (Theory of Chemical Processes of Main Organic and Petrochemical Synthesis),Lebedev, N.N., Eds., Moscow: Khimiya, 1984.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. L. Esipovich
    • 1
    • 2
  • A. S. Belousov
    • 1
    Email author
  • E. A. Kanakov
    • 1
  • V. Yu. Mironova
    • 1
  • A. E. Rogozhin
    • 1
  • S. M. Danov
    • 1
  • A. V. Vorotyntsev
    • 1
  • D. A. Makarov
    • 1
  1. 1.Nizhny Novgorod State Technical University n.a. R.E. AlekseevNizhny NovgorodRussia
  2. 2.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations