Advertisement

Kinetics and Catalysis

, Volume 59, Issue 6, pp 710–719 | Cite as

Synthesis and Characterization of CdS Photocatalyst with Different Morphologies: Visible Light Activated Dyes Degradation Study

  • W. HussainEmail author
  • H. Malik
  • A. Bahadur
  • R. A. Hussain
  • M. Shoaib
  • Sh. Iqbal
  • H. Hussain
  • I. R. Green
  • A. BadshahEmail author
  • H. Li
Article
  • 37 Downloads

Abstract

CdS nanoparticles (CdS NPs) and CdS nanoslabs (CdS NSs) were synthesized from the single source (SS) and multi-source (MS) precursors, respectively. Our target was to observe any change in morphology by altering the synthetic route. CdS NPs with spherical morphology (0.2–0.5 µm in diameter) were obtained by using the SS precursor route via the formation of a Cd-complex. CdS NSs (100–200 nm in length, 50–100 nm wide and 25–50 nm in thickness) were obtained by using the MS precursors, by direct addition of the ligand to metal salt. Both NPs and NSs were used for the degradation of four different cationic organic dyes viz., malachite green (MG), methylene blue (MB), rhodamine B (RhB) and methyl violet (MV) under visible light. CdS NPs synthesized from SS precursor exhibited higher photocatalytic activity than CdS NSs fabricated via MS precursor due to spherical morphologies (small size of particles increases the surface area) and higher band gap. On the other hand, CdS NSs show sheet or cube like morphologies. The kinetic study proved that the rate constants for the MG, MB, MV, and RhB degradation by CdS NPs (1.65 × 10–2, 1.25 × 10–2, 1.2 × 10–2, and 1.24 × 10–2 min–1, respectively) are higher than those for CdS NSs (1.45 × 10–2, 1.13 × 10–2, 1.05 × 10–2, 1.14 × 10–2 min–1, respectively). The precursors were characterized by 1H and 13C nuclear magnetic resonance. Phase pattern and composition of CdS were confirmed by X-ray diffraction and energy dispersive X-ray spectroscopy. Morphology and size were confirmed by transmission electron microscopy and scanning electron microscopy.

Keywords:

photocatalyst dye degradation morphology precursor CdS nanoslabs single source multi-source 

Notes

ACKNOWLEDGMENTS

The authors are highly thankful to the Higher Education Commission (HEC) (Pakistan) and Quaid-i-Azam University (Islamabad) for providing all the facilities to carry out this work.

REFERENCES

  1. 1.
    Bajpai, P.K., Yadav, S., Tiwari, A., and Virk, H.S., Solid State Phenom., 2015, vol. 222, p. 187.CrossRefGoogle Scholar
  2. 2.
    Chen, J., Bradhurst, D., Dou, S., and Liu, H.K., J. Electrochem. Soc., 1999, vol. 146, no. 10, p. 3606.CrossRefGoogle Scholar
  3. 3.
    Bahadur, A., Iqbal, S., Saeed, A., Bashir, M.I., Shoaib, M., Waqas, M., Shabir, G., and Jabbar, A., Chem. Pap., 2017, vol. 71, no. 8, p. 1445.CrossRefGoogle Scholar
  4. 4.
    Pickett, N.L., Foster, D.F., and Cole-Hamilton, D.J., J. Mater. Chem., 1996, vol. 6, no. 3, p. 507.Google Scholar
  5. 5.
    Nikazara, M., Gholivand, K., and Mahanpoor, K., Kinet. Catal., 2007, vol. 48, no. 2, p. 214.CrossRefGoogle Scholar
  6. 6.
    Li, W.N., Yuan, J., Shen, X.F., Gomez-Mower, S., Xu, L.P., Sithambaram, S., Aindow, M., and Suib, S.L., Adv. Funct. Mater., 2006, vol. 16, no. 9, p. 1247.CrossRefGoogle Scholar
  7. 7.
    Nie, L., Gao, L., Feng, P., Zhang, J., Fu, X., Liu, Y., Yan, X., and Wang, T., Small, 2006, vol. 2, no. 5, p. 621.CrossRefGoogle Scholar
  8. 8.
    Tang, Z., Kotov, N.A., and Giersig, M., Science, 2002, vol. 297, no. 5579, p. 237.CrossRefGoogle Scholar
  9. 9.
    Zhong, Z., Yin, Y., Gates, B., and Xia, Y., Adv. Mater., 2000, vol. 12, no. 3, p. 206.CrossRefGoogle Scholar
  10. 10.
    Chen, Y., Wang, L., Lu, G.M., Yao, X., and Guo, L., J. Mater. Chem., 2011, vol. 21, no. 13, p. 5134.CrossRefGoogle Scholar
  11. 11.
    Xiong, J., Cheng, G., Lu, Z., Tang, J., Yu, X., and Chen, R., CrystEngComm, 2011, vol. 13, no. 7, p. 2381.CrossRefGoogle Scholar
  12. 12.
    Zhu, L.-P., Xiao, H.-M., Liu, X.-M., and Fu, S.-Y., J. Mater. Chem., 2006, vol. 16, no. 19, p. 1794.CrossRefGoogle Scholar
  13. 13.
    Bahadur, A., Saeed, A., Iqbal, S., Shoaib, M., Ahmad, I., ur Rahman, M.S., Bashir, M.I., Yaseen, M., and Hussain, W., Ceram. Int., 2017, vol. 43, no. 9, p. 7346.CrossRefGoogle Scholar
  14. 14.
    Ghasemi, Y., Peymani, P., and Afifi, S., Acta Biomed., 2009, vol. 80, no. 2, p. 156.Google Scholar
  15. 15.
    Iqbal, S., Bahadur, A., Saeed, A., Zhou, K., Shoaib, M., and Waqas, M., J. Colloid Interface Sci., 2017, vol. 502, p. 16.CrossRefGoogle Scholar
  16. 16.
    Liu, Z., Bai, H., and Sun, D., Appl. Catal., B, 2011, vol. 104, no. 3, p. 234.CrossRefGoogle Scholar
  17. 17.
    Roy, P., Berger, S., and Schmuki, P., Angew. Chem., 2011, vol. 50, no. 13, p. 2904.CrossRefGoogle Scholar
  18. 18.
    Waqas, M., Iqbal, S., Bahadur, A., Saeed, A., Raheel, M., and Javed, M., Appl. Catal., B, 2017, vol. 219, p. 30.CrossRefGoogle Scholar
  19. 19.
    Ghows, N., and Entezari, M., Ultrason. Sonochem., 2011, vol. 18, no. 1, p. 269.Google Scholar
  20. 20.
    Kumar, R.V., Palchik, O., Koltypin, Y., Diamant, Y., and Gedanken, A., Ultrason. Sonochem., 2002, vol. 9, no. 2, p. 65.CrossRefGoogle Scholar
  21. 21.
    Murugan, A.V., Sonawane, R., Kale, B., Apte, S., and Kulkarni, A.V., Mater. Chem. Phys., 2001, vol. 71, no. 1, p. 98.CrossRefGoogle Scholar
  22. 22.
    Okuyama, K., Lenggoro, I.W., Tagami, N., Tamaki, S., and Tohge, N., J. Mater. Sci., 1997, vol. 32, no. 5, p. 1229.CrossRefGoogle Scholar
  23. 23.
    Tai, G.a., Zhou, J., and Guo, W., Nanotechnology, 2010, vol. 21, no. 17, p. 175601.CrossRefGoogle Scholar
  24. 24.
    Bahadur, A., Saeed, A., Shoaib, M., Iqbal, S., Bashir, M.I., Waqas, M., Hussain, M.N., and Abbas, N., Mater. Chem. Phys., 2017, vol. 198, p. 229.CrossRefGoogle Scholar
  25. 25.
    Erra, S., Shivakumar, C., Zhao, H., Barri, K., Morel, D., and Ferekides, C., Thin Solid Films, 2007, vol. 515, no. 15, p. 5833.CrossRefGoogle Scholar
  26. 26.
    Jing, D. and Guo, L., J. Phys. Chem. B, 2006, vol. 110, no. 23, p. 11139.CrossRefGoogle Scholar
  27. 27.
    Hussain, W., Badshah, A., Hussain, R.A., Aleem, M.A., Bahadur, A., Iqbal, S., Farooq, M.U., and Ali, H., Mater. Chem. Phys., 2017, vol. 194, p. 345.CrossRefGoogle Scholar
  28. 28.
    Bao, N., Shen, L., Takata, T., Domen, K., Gupta, A., Yanagisawa, K., and Grimes, C.A. J. Phys. Chem. C, 2007, vol. 111, no. 47, p. 17527.Google Scholar
  29. 29.
    Morales, A.M., and Lieber, C.M., Science, 1998, vol. 279, no. 5348, p. 208.CrossRefGoogle Scholar
  30. 30.
    Li, C., Yuan, J., Han, B., and Shangguan, W., Int. J. Hydrogen Energy, 2011, vol. 36, no. 7, p. 4271.CrossRefGoogle Scholar
  31. 31.
    Ajmal, A., Majeed, I., Malik, R.N., Idriss, H., and Nadeem, M.A., RSC Adv., 2014, vol. 4, no. 70, p. 37003.CrossRefGoogle Scholar
  32. 32.
    Hu, Y., Liu, Y., Qian, H., Li, Z., and Chen, J., Langmuir, 2010, vol. 26, no. 23, p. 18570.CrossRefGoogle Scholar
  33. 33.
    Kansal, S., Singh, M., and Sud, D., J. Hazard. Mater., 2007, vol. 141, no. 3, p. 581.CrossRefGoogle Scholar
  34. 34.
    Lin, G., Zheng, J., and Xu, R., J. Phys. Chem. C, 2008, vol. 112, no. 19, p. 7363.CrossRefGoogle Scholar
  35. 35.
    Ounnar, A., Favier, L., Bouzaza, A., Bentahar, F., and Trari, M., Kinet. Catal., 2016, vol. 57, no. 2, p. 200.CrossRefGoogle Scholar
  36. 36.
    Dutta, A.K., Maji, S.K., Srivastava, D.N., Mondal, A., Biswas, P., Paul, P., and Adhikary, B., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 4, p. 1919.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • W. Hussain
    • 1
    Email author
  • H. Malik
    • 1
  • A. Bahadur
    • 1
  • R. A. Hussain
    • 1
  • M. Shoaib
    • 1
  • Sh. Iqbal
    • 4
  • H. Hussain
    • 2
  • I. R. Green
    • 3
  • A. Badshah
    • 1
    Email author
  • H. Li
    • 5
  1. 1.Department of Chemistry, Quaid-i-Azam UniversityIslamabadPakistan
  2. 2.University of Nizwa Chair of Oman’s Medicinal Plants and Marine Natural ProductsBirkat Al MauzSultanate of Oman
  3. 3.Department of Chemistry and Polymer Sciences, University of Stellenbosch Private Bag X1MatielandStellenboschSouth Africa
  4. 4.International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong UniversityShaanxiChina
  5. 5.Key Laboratory of Cluster Sciences of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of TechnologyBeijingChina

Personalised recommendations