Skip to main content
Log in

The Formation of OH*(2Σ+) Radical in the Reaction of Hydrogen with Oxygen behind a Shock Wave in Nonequilibrium Conditions

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The mechanism of formation of the electronically excited radical OH*(A2Σ+) has been studied by analyzing calculations quantitatively describing the results of shock wave experiments carried out in order to determine the moment of maximum OH* radiation at temperatures T < 1500 K and pressures P ≤ 2 atm in the H2 + O2 mixtures diluted by argon when the vibrational nonequilibrium is a factor determining the mechanism and rate of the overall process. In kinetic calculations, the vibrational nonequilibrium of the initial H2 and O2 components, the HO2, OH(X2Π), O2*(1Δ) intermediates, and the reaction product H2O were taken into account. The analysis showed that under these conditions the main contribution to the overall process of OH* formation is caused by the reactions OH + Ar → OH* + Ar, H2 + HO2 → OH* + H2O, H2 + O*(1D) → OH* + H, HO2 + O → OH* + O2 and H + H2O → OH* + H2, which occur in the vibrational nonequilibrium mode (their activation barrier is overcome due to the vibrational excitation of reactants), and by H + O3 → OH* + O2 and H + H2O2 → OH* + H2O, which are reverse to the reactions of chemical quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kondrat'ev, V.N. and Nikitin, E.E., Kinetika i mekhanizm gazofaznykh reaktsii (Kinetics and Mechanism of Gas-Phase Reactions), Moscow: Nauka, 1974.

    Google Scholar 

  2. Belles, F.E. and Lauver, M.R., J. Chem. Phys., 1964, vol. 40, p. 415.

    Article  CAS  Google Scholar 

  3. Skinner, G.B. and Ringrose, G.H., J. Chem. Phys., 1965, vol. 42, p. 2190.

    Article  CAS  Google Scholar 

  4. Shott, G., and Getzinger, R., Fizicheskaya khimiya bystrykh reaktsii (Physical Chemistry of Fast Reactions), Moscow: Mir, 1976.

    Google Scholar 

  5. Hidaka, Y., Takahashi, S., Kawano, H., Suga, M., and Gardiner, W.C., Jr., J. Phys. Chem., 1982, vol. 86, p. 1429.

    Article  CAS  Google Scholar 

  6. Divakov, O.G., Eremin, A.V., Ziborov, V.S., and Fortov, V.E., Dokl. Chem., 2000, vol. 373, nos. 4–6, p. 141.

    Google Scholar 

  7. Skrebkov, O.V., Myagkov, Yu.P., Karkach, S.P., Vasil’ev, V.M., and Smirnov, A.L., Dokl. Phys. Chem., 2002, vol. 383, no. 6, p. 782.

    Google Scholar 

  8. Skrebkov, O.V., Karkach, S.P., Vasil’ev, V.M., and Smirnov, A.L., Chem. Phys. Lett., 2003, vol. 375, p. 413.

    Article  CAS  Google Scholar 

  9. Kathrotia, T., Fikri, M., Bozkurt, M., Hartmann, M., Riedel, U., and Schulz, C., Combust. Flame, 2010, vol. 157, p. 1261.

    Article  CAS  Google Scholar 

  10. Pavlov, V.A., Shatalov, O.P., Kinet. Catal., 2011, vol. 52, no. 2, p. 157.

    Article  CAS  Google Scholar 

  11. Li, J., Zhao, Z., Kazakov, A., and Dryer, F.L., Int. J. Chem. Kinet., 2004, vol. 36, p. 566.

    Article  CAS  Google Scholar 

  12. Konnov, A.A., Combust. Flame, 2008, vol. 152, p. 507.

    Article  CAS  Google Scholar 

  13. Burke, M.P., Chaos, M., Ju, Yi., and Dryer, F.L., Klippenstein, S.J., Int. J. Chem. Kinet., 2012, vol. 44, p. 444.

    Article  CAS  Google Scholar 

  14. Turanyi, T., Nagy, T., Zsely, I.Gy., Cserhati, M., Varga, T., Szabo, B.T., Sedyo, I., Kiss, P.T., Zempleni, A., and Curran, H.J., Int. J. Chem. Kinet., 2012, vol. 44, p. 284.

    Article  CAS  Google Scholar 

  15. Bradley, J.N., Shock Waves in Chemistry and Physics, New York: Methuen–Wiley, 1962.

    Google Scholar 

  16. Kondrat'ev, V.N., Problemy khimicheskoi kinetiki (K 80- letiyu akad. N.N. Semenova) (Problems of Chemical Kinetics (To the 80th Anniversary of Academician N.N. Semenov)), Moscow: Nauka, 1979, part 1, p. 13.

    Google Scholar 

  17. Skrebkov, O.V., J. Mod. Phys., 2014, vol. 5, p. 1806.

    Article  Google Scholar 

  18. Fairchild, P.W., Smith, G.P., and Crosley, D.R., J. Chem. Phys., 1983, vol. 79, p. 1795.

    Article  CAS  Google Scholar 

  19. Smith, G.P. and Crosley, D.R., J. Chem. Phys., 1986, vol. 85, p. 3896.

    Article  CAS  Google Scholar 

  20. Dempsey, L.P., Murray, C., and Lester, M.I., J. Chem. Phys., 2007, vol. 127, p. 151101.

    Article  CAS  PubMed  Google Scholar 

  21. Skrebkov, O.V., and Karkach, S.P., Kinet. Catal., 2007, vol. 48, no. 3, p. 367.

    Article  CAS  Google Scholar 

  22. Skrebkov, O.V., Karkach, S.P., Ivanova, A.N., and Kostenko, S.S., Kinet. Catal., 2009, vol. 50, no. 4, p. 461.

    Article  CAS  Google Scholar 

  23. Dempsey, L.P., Sechler, T.D., Murray, C., and Lester, M.I., J. Phys. Chem. A, 2009, vol. 113, p. 6851.

    Article  CAS  PubMed  Google Scholar 

  24. Brouard, M., Lawlor, J., McCrudden, G., Perkins, T., Seamons, S.A., Stevenson, P., Chadwick, H., and Aoiz, F.J., J. Chem. Phys. 2017, vol. 146, p. 244313.

    Article  CAS  PubMed  Google Scholar 

  25. Skrebkov, O.V., Combust. Theory Modell., 2015, vol. 19, no. 2, p. 131.

    Article  CAS  Google Scholar 

  26. Wadlinger, R.L. and Darwent, B. de B., J. Phys. Chem., 1967, vol. 71, p. 2057.

    Article  CAS  Google Scholar 

  27. Pack, R.T., Butcher, E.A., and Parker, G.A., J. Chem. Phys., 1995, vol. 102, p. 5998.

    Article  CAS  Google Scholar 

  28. Dobbyn, A.J., Stumpf, M., Keller, H.-M., and Schinke, R., J. Chem. Phys., 1996, vol. 104, p. 8357.

    Article  CAS  Google Scholar 

  29. Harding, L.B., Troe, J., and Ushakov, V.G., Phys. Chem. Chem. Phys., 2000, vol. 2, p. 631.

    Article  CAS  Google Scholar 

  30. Karkach, S.P. and Osherov, V.I., J. Chem. Phys., 1999, vol. 110, p. 11918.

    Article  CAS  Google Scholar 

  31. Michael, J.V., Suhterland, J.W., Harding, L.B., and Wagner, A.F., Proc. Combust. Inst., 2000, vol. 28, p. 1471.

    Article  CAS  Google Scholar 

  32. Ryu, S.-O., Hwang, S.M., and Rabinovitz, M.J., J. Phys. Chem., 1995, vol. 99, p. 13984.

    Article  CAS  Google Scholar 

  33. Carrington, T., J. Chem. Phys., 1959, vol. 30, p. 1087.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Skrebkov.

Additional information

Original Russian Text © O.V. Skrebkov, A.L. Smirnov, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 5, pp. 531–538.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skrebkov, O.V., Smirnov, A.L. The Formation of OH*(2Σ+) Radical in the Reaction of Hydrogen with Oxygen behind a Shock Wave in Nonequilibrium Conditions. Kinet Catal 59, 545–552 (2018). https://doi.org/10.1134/S0023158418050117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158418050117

Keywords

Navigation