One-Pot Synthesis of Secondary Amines from Nitroarenes and Aldehydes on Supported Copper Catalysts in a Flow Reactor: The Effect of the Support

Abstract

The effect of the support on the properties of copper catalysts supported on γ-Al2O3, SiO2, and TiO2–SiO2 with a ~5 wt % Cu content was studied in the one-pot synthesis of N-heptyl-p-toluidine from p-nitrotoluene and n-heptanal. The catalysts were characterized by elemental analysis, X-ray diffraction analysis, transmission electron microscopy, temperature-programmed reduction, and low-temperature nitrogen adsorption. The reaction was carried out in a flow reactor with the use of molecular hydrogen as a reducing agent. It was established that the nature of the support exerts a profound effect on the yield of the target secondary amine; in this case, 5%Cu/Al2O3 was found the most active catalyst. A combination of high catalyst activity in the hydrogenation of a nitro group to an amino group with the presence of acid sites, which facilitate imine formation as a result of the interaction of n-heptanal with p-toluidine, on the catalyst surface is necessary for reaching the greatest yield of N-heptyl-p-toluidine. The study of reaction mechanism on the 5%Cu/Al2O3 catalyst showed that p-nitrotoluene inhibits the hydrogenation of n-heptanal, and aldehyde hydrogenation into alcohol begins only after the conversion of the major portion of p-nitrotoluene as a result of the selective adsorption of the nitroarene under the conditions of the simultaneous presence of p-nitrotoluene and n-heptanal in the reaction mixture.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Salvatore, R.N., Yoon, C.H., and Jung, K.W., Tetrahedron, 2001, vol. 57, p. 7785.

    Article  CAS  Google Scholar 

  2. 2.

    Blaser, H.-U., Steiner, H., and Studer, M., Chem-CatChem, 2009, vol. 1, p. 210.

    CAS  Google Scholar 

  3. 3.

    Roundhill, D.M., Chem. Rev., 1992, vol. 92, p. 1.

    Article  CAS  Google Scholar 

  4. 4.

    Ananikov, V.P., Khemchyan, L.L., Ivanova, Y.V., Dilman, A.D., Levin, V.V., Stakheev, A.Y., Turova, O.V., Mashkovsky, I.S., Terent’ev, A.O., Krylov, I.B., Bukhtiyarov, V.I., Sorokin, A.M., Prosvirin, I.P., Romanenko, A.V., Simonov, P.A., Bukhtiyarova, G.A., Kop-tyug, I.V., Kovtunov, K.V., Zhivonitko, V.V., Vatsadze, S.Z., et al., Rus. Chem. Rev., 2014, vol. 83, no. 10, p. 885.

    Article  CAS  Google Scholar 

  5. 5.

    Shimizu, K., Catal. Sci. Technol., 2015, vol. 5, p. 1412.

    Article  CAS  Google Scholar 

  6. 6.

    Climent, M.J., Corma, A., and Iborra, S., Chem. Rev., 2011, vol. 111, p. 1072.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Hu, L., Cao, X., Ge, D., Hong, H., Guo, Z., Chen, L., Sun, X., Tang, J., Zheng, J., Lu, J., and Gu, H., Chem. Eur. J., 2011, vol. 17, p. 14283.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Li, L., Niu, Z., Cai, S., Zhi, Y., Li, H., Rong, H., Liu, L., He, W., and Li, Y., Chem. Commun., 2013, vol. 49, p. 6843.

    Article  CAS  Google Scholar 

  9. 9.

    Cirujano, F.G., Leyva-Perez, A., Corma, A., and Llabresi Xamena, F.X., ChemCatChem, 2013, vol. 5, p. 538.

    Article  CAS  Google Scholar 

  10. 10.

    Yamane, Y., Liu, X., Hamasaki, A., Ishida, T., Haruta, M., Yokoyama, T., and Tokunaga, M., Org. Lett., 2009, vol. 11, p. 5162.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Sydnes, M.O. and Isobe, M., Tetrahedron Lett., 2008, vol. 49, p. 1199.

    Article  CAS  Google Scholar 

  12. 12.

    Dell’Anna, M.M., Mastrorilli, P., Rizzuti, A., and Leonelli, C., Appl. Catal., A, 2011, vol. 401, p. 134.

    Article  CAS  Google Scholar 

  13. 13.

    Sreedhar, B., Reddy, P.S., and Devi, D.K., Org. Chem., 2009, vol. 74, p. 8806.

    Article  CAS  Google Scholar 

  14. 14.

    Wei, S., Dong, Z., Ma, Z., Sun, J., and Ma, J., Catal. Commun., 2013, vol. 30, p. 40.

    Article  CAS  Google Scholar 

  15. 15.

    Zhou, J., Dong, Z., Wang, P., Shi, Z., Zhou, X., and Li, R., J. Mol. Catal. A: Chem., 2014, vol. 382, p. 15.

    Article  CAS  Google Scholar 

  16. 16.

    Santos, L.L., Serna, P., and Corma, A., Chem. Eur. J., 2009, vol. 15, p. 8196.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Pintado-Sierra, M., Rasero-Almansa, A.M., Corma, A., Iglesias, M., and Sanchez, F., J. Catal., 2013, vol. 299, p. 137.

    Article  CAS  Google Scholar 

  18. 18.

    Artiukha, E.A., Nuzhdin, A.L., Bukhtiyarova, G.A., Zaytsev, S.Yu., Pluysnin, P.E., Shubin, Yu.V., and Bukhtiyarov, V.I., Catal. Sci. Technol., 2015, vol. 5, p. 4741.

    Article  CAS  Google Scholar 

  19. 19.

    Nuzhdin, A.L., Artiukha, E.A., Bukhtiyarova, G.A., Zaytsev, S.Yu., Plyusnin, P.E., Shubin, Yu.V., and Bukhtiyarov, V.I., RSC Adv., 2016, vol. 6, p. 88366.

    Article  CAS  Google Scholar 

  20. 20.

    Artiukha, E.A., Nuzhdin, A.L., Bukhtiyarova, G.A., and Bukhtiyarov, V.I., RSC Adv., 2017, vol. 7, p. 45856.

    Article  CAS  Google Scholar 

  21. 21.

    Nuzhdin, A.L., Artiukha, E.A., Bukhtiyarova, G.A., Derevyannikova, E.A., and Bukhtiyarov, V.I., Catal. Commun., 2017, vol. 102, p. 108.

    Article  CAS  Google Scholar 

  22. 22.

    Stemmler, T., Surkus, A.-E., Pohl, M.-M., Junge, K., and Beller, M., ChemSusChem, 2014, vol. 7, p. 3012.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Stemmler, T., Westerhaus, F.A., Surkus, A.-E., Pohl, M.-M., Junge, K., and Beller, M., Green Chem., 2014, vol. 16, p. 4535.

    Article  CAS  Google Scholar 

  24. 24.

    Cui, X., Liang, K., Tian, M., Zhu, Y., Ma, J., and Dong, Z., J. Colloid Interface Sci., 2017, vol. 501, p. 231.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Jiang, L., Zhou, P., Zhang, Z., Chi, Q., and Jin, S., New J. Chem., 2017, vol. 41, p. 11991.

    Article  CAS  Google Scholar 

  26. 26.

    Wiles, C. and Watts, P., Green Chem., 2014, vol. 16, p. 55.

    Article  CAS  Google Scholar 

  27. 27.

    Irfan, M., Glasnov, T.N., and Kappe, C.O., ChemSus-Chem, 2011, vol. 4, p. 300.

    Article  CAS  Google Scholar 

  28. 28.

    TOPAS 2009 Bruker AXS, 4.2 Ed., 1999.

  29. 29.

    Nuzhdin, A.L., Moroz, B.L., Bukhtiyarova, G.A., Reshetnikov, S.I., Pyrjaev, P.A., Aleksandrov, P.V., and Bukhtiyarov, V.I., ChemPlusChem, 2015, vol. 80, p. 1741.

    Article  CAS  Google Scholar 

  30. 30.

    Downing, R.S., Kunkeler, P.J., and van Bekkum, H., Catal. Today, 1997, vol. 37, p. 121.

    Article  CAS  Google Scholar 

  31. 31.

    Shimizu, K.I., Miyamoto, Y., Kawasaki, T., Tanji, T., Tai, Y., and Satsuma, A., J. Phys. Chem. C, 2009, vol. 113, p. 17803.

    Article  CAS  Google Scholar 

  32. 32.

    Corma, A., Serna, P., Concepcion, P., and Calvino, J.J., J. Am. Chem. Soc., 2008, vol. 130, p. 8748.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Boronat, M., Concepción, P., Corma, A., González, S., Illas, F., and Serna, P., J. Am. Chem. Soc., 2007, vol. 129, p. 16230.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Serna, P., Boronat, M., and Corma, A., Top. Catal., 2011, vol. 54, p. 439.

    Article  CAS  Google Scholar 

  35. 35.

    Prins, R., Chem. Rev., 2012, vol. 112, p. 2714.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. L. Nuzhdin.

Additional information

Original Russian Text © E.A. Artyukha, A.L. Nuzhdin, G.A. Bukhtiyarova, E.A. Derevyannikova, E.Yu. Gerasimov, A.Yu. Gladkii, V.I. Bukhtiyarov, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 5, pp. 583–590.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Artyukha, E.A., Nuzhdin, A.L., Bukhtiyarova, G.A. et al. One-Pot Synthesis of Secondary Amines from Nitroarenes and Aldehydes on Supported Copper Catalysts in a Flow Reactor: The Effect of the Support. Kinet Catal 59, 593–600 (2018). https://doi.org/10.1134/S0023158418050014

Download citation

Keywords

  • one-stage synthesis
  • secondary amines
  • nitroarenes
  • aldehydes
  • flow reactor
  • molecular hydrogen
  • supported copper catalysts
  • support effect