Advertisement

Kinetics and Catalysis

, Volume 59, Issue 4, pp 459–471 | Cite as

Catalytic Conversion of Glycerol to Lactic Acid: State of the Art and Prospects

  • S. A. ZavrazhnovEmail author
  • A. L. Esipovich
  • S. M. Danov
  • S. Yu. Zlobin
  • A. S. Belousov
Article

Abstract

In this review article, recent trends in the catalytic processes for the synthesis of lactic acid from glycerol are systematized. Based on literature data, the mechanisms of glycerol conversion in the presence of bases and the oxidative conversion of glycerol are proposed. Advantages and disadvantages of each method are shown and prospects in the use of highly selective heterogeneous catalytic processes are discussed.

Keywords

glycerol oxidation lactic acid heterogeneous catalysis heteropoly acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Food Standarts Agency, Current EU approved additives and their E Numbers. https://doi.org/www.food.gov.uk/science/additives/enumberlist (Accessed October 30, 2017).
  2. 2.
    Choi, S.H. and Chin, K.B., Meat Sci., 2003, vol. 65, p. 531.CrossRefPubMedGoogle Scholar
  3. 3.
    Paul, S., Praghan, K., and Das, R.A., Curr. Green Chem., 2016, vol. 3, p. 111.CrossRefGoogle Scholar
  4. 4.
    Lindsay, S. and Matthew, J.E., ACS Sustainable Chem. Eng., 2016, vol. 11, p. 5821.Google Scholar
  5. 5.
    Kornhauser, A., Coelho, S., and Hearing, V., Clin. Cosmet. Invest. Dermatol., 2010, vol. 3, p. 135.CrossRefGoogle Scholar
  6. 6.
    Garg, T., Ramam, M., Pasricha, S., and Verma, K., Indian J. Dermatol. Venereol., 2002, vol. 68, p. 137.Google Scholar
  7. 7.
    Alsaheb, R.A., Aladdin, A., Othman, N.Z., Malek, R.A., Leng, O.M., Aziz, R., and Enshasy, H.A., J. Chem. Pharm. Res., 2015, vol. 7, p. 729.Google Scholar
  8. 8.
    Kotiyan, P.N. and Vavia, P.R., Polym. Adv. Technol., 2002, vol. 13, p. 137.CrossRefGoogle Scholar
  9. 9.
    Czech, Z., J. Adhes. Sci. Technol., 2012, vol. 21, p. 625.CrossRefGoogle Scholar
  10. 10.
    Ismail, H., Ahmad, Z., and Yew, F., J. Phys. Sci., 2011, vol. 22, p. 51.Google Scholar
  11. 11.
    Ma, Q.L. and Huang, Y.M., Key Eng. Mater., 2010, vol. 428–429, p. 345. https://doi.org/www.scientific.net/KEM.428-429.345.CrossRefGoogle Scholar
  12. 12.
    Zohuriaan-Mehr, M.J. and Kabiri, K., Iran Polym. J., 2008, vol. 17, p. 451.Google Scholar
  13. 13.
    Maki-Arvela, P., Simakova, I.L., Salmi, T., and Murzin, D. Yu., Chem. Rev., 2014, vol. 114, p. 1909.CrossRefPubMedGoogle Scholar
  14. 14.
    Simonov, M.N., Simakova, I.L., and Parmon, V.N., React. Kinet. Catal. Lett., 2009, vol. 97, p. 157.CrossRefGoogle Scholar
  15. 15.
    Wang, C.-S., Yang, L.-T., Ni, B.-L., and Shi, G., J. Appl. Polym. Sci., 2009, vol. 114, p. 125.CrossRefGoogle Scholar
  16. 16.
    Glowinska, E. and Datta, J., Cellulose, 2016. V., 23, p. 581.CrossRefGoogle Scholar
  17. 17.
    Saxena, R.K., Anand, P., Saran, S., Isar, J., and Agarwal, L., Indian J. Microbiol., 2010, vol. 50, p. 2.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Szumala, P. and Szelag, H., J. Surfactants Deterg., 2012, vol. 15, p. 485.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Agrawal, A.K. and Bhalla, R., J. Macromol. Sci., Polym. Rev., 2003, vol. 43, p. 479.CrossRefGoogle Scholar
  20. 20.
    Savioli, L.M., Jardini, A., and Maciel, F.R., Chem. Eng. Trans., 2014, vol. 38, p. 331.Google Scholar
  21. 21.
    Cheng, Y., Deng, S., Chen, P., and Ruan, R., Front. Chem. China, 2009, vol. 4. P., 259.CrossRefGoogle Scholar
  22. 22.
    Alexander, A., Khan, J., Saraf, Sw., and Saraf, Sh., J. Controlled Release, 2013, vol. 172, p. 715.CrossRefGoogle Scholar
  23. 23.
    Wischke, C. and Schwendeman, S., Int. J. Pharm., 2008, vol. 364, p. 298.CrossRefPubMedGoogle Scholar
  24. 24.
    Conti, B., Pavanetto, F., and Genta, I., J. Microencapsulation, 1992, vol. 9, p. 153.CrossRefPubMedGoogle Scholar
  25. 25.
    Liggins, R.T., D’Amours, S., Demetrick, J.S., Machan, L.S., and Burt, H.M., Biomaterials, 2000, vol. 21, p. 1959.CrossRefPubMedGoogle Scholar
  26. 26.
    Hutmacher, D.W., J. Biomater. Sci., Polym. Ed., 2001, vol. 12, p. 107.CrossRefGoogle Scholar
  27. 27.
    Serra, T., Mateos-Timoneda, M.A., Planell, J.A., and Navarro, M., Organogenesis, 2013, vol. 9, p. 239.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hao, W., Dong, J., Jiang, M., Wu, J., Cui, F., and Zhou, D., Int. Orthop., 2010, vol. 34, p. 1341.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Al-Mubarak, L. and Al-Haddab, M., J. Cutan. Aesthet. Surg., 2013, vol. 6, p. 178.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Siracusa, V., Blanco, I., Romani, S., Tylewicz, U., Rocculi, P., and Rosa, M., J. Appl. Polym. Sci., 2012, vol. 125, p. 390.CrossRefGoogle Scholar
  31. 31.
    Marra, A., Silvestre, C., Duraccio, D., and Cimmino, S., Int. J. Biol. Macromol., 2016, vol. 88, p. 254.CrossRefPubMedGoogle Scholar
  32. 32.
    Auras, R., Harte, B., and Selke, S., Macromol. Biosci., 2004, vol. 4, p. 835.CrossRefPubMedGoogle Scholar
  33. 33.
    Finkenstadt, V.L. and Tisserat, B., Ind. Crops Prod., 2010, vol. 31, p. 316.CrossRefGoogle Scholar
  34. 34.
    Tachibana, Y., Maeda, T., Ito, O., Maeda, Y., and Kunioka, M., Int. J. Mol. Sci., 2009, vol. 10, p. 3599.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    UK Patent 300040, 1928.Google Scholar
  36. 36.
    Rivas, B., Moldes, A., Dominguez, J., and Parajo, J., Enzyme Microb. Technol., 2004, vol. 34, p. 627.CrossRefGoogle Scholar
  37. 37.
    Vijayakumar, J., Aravindan, R., and Viruthagiri, T., Chem. Biochem. Eng. Q., 2008, vol. 22, p. 245.Google Scholar
  38. 38.
    Reimann, W., Agricult. Eng. Int.: the CIGR Ejournal, 2006.Google Scholar
  39. 39.
    Oh, H., Wee, Y.J., Yun, J.S., Han, S.H., Jung, S., and Ryu, H.W., Bioresour. Technol., 2005, vol. 96, p. 1492.CrossRefPubMedGoogle Scholar
  40. 40.
    Pang, X., Zhuang, X., Tang, Z., and Chen, X., Biotechnol. J., 2010, vol. 5, p. 1125.CrossRefPubMedGoogle Scholar
  41. 41.
    Randhawa, M.A., Ahmed, A., and Akram, K. Pak, J. Bot., 2012, vol. 44, p. 333.Google Scholar
  42. 42.
    Hwang, H.J., Kim, S.M., Chang, J.H., and Lee, S.B., J. Appl. Phycol., 2012, vol., 24, p. 935.CrossRefGoogle Scholar
  43. 43.
    Global Lactic Acid Market Size, Market Share, Application Analysis, Regional Outlook, Growth Trends, Key Players, Competitive Strategies and Forecasts, 2015 to 2022. https://doi.org/www.researchandmarkets.com/research/3n8b8s/global_lactic. Accessed October 30, 2017.
  44. 44.
    Xie, W., Peng, H., and Chen, L., Appl. Catal., A, 2006, vol. 300, p. 67.CrossRefGoogle Scholar
  45. 45.
    Abdullah, A.Z., Razali, N., and Lee, K.T., Fuel Process. Technol., 2009, vol. 90, p. 958.CrossRefGoogle Scholar
  46. 46.
    Ayoub, M. and Abdullah, A.Z., Renewable Sustainable Energy Rev., 2012, vol. 16, p. 2671.CrossRefGoogle Scholar
  47. 47.
    Katryniok, B., Paul, S., and Dumeignil, F., ACS Catal., 2013, vol. 3, p. 1819.CrossRefGoogle Scholar
  48. 48.
    WO Patent 2008126667 A2, 2008.Google Scholar
  49. 49.
    Hong, A.A., Tanino, K.K., Peng, F., Zhou, S., Sun, Y., Liu, C.M., and Liu, D.H., J. Chem. Technol. Biotechnol., 2009, vol. 84, p. 1576.CrossRefGoogle Scholar
  50. 50.
    Mazumdar, S., Clomburg, J.M., and Gonzalez, R., Appl. Environ. Microbiol., 2010, vol. 76, p. 4327.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tian, K., Chen, X., Shen, W., Prior, B.A., Shi, G., Singh, S., and Wang, Z., Afr. J. Biotechnol., 2012, vol. 11, p. 4860.Google Scholar
  52. 52.
    Mazumdar, S., Blankschien, M.D., Clomburg, J.M., and Gonzalez, R., Microb. Cell Fact., 2013, vol. 12, p. 7.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Abdel-Rahman, M.A., Tashiro, Y.A., and Sonomoto, K., Biotechnol. Adv., 2013, vol. 31, p. 877.CrossRefPubMedGoogle Scholar
  54. 54.
    Eyal, A.M. and Bressler, E., Biotechnol. Bioeng., 1993, vol. 41, p. 287.CrossRefPubMedGoogle Scholar
  55. 55.
    Sirisansaneeyakul, S., Luangpipat, T., Vanichsriratana, W., Srinophakun, T., Chen, H.H., and Chisti, Y., J. Ind. Microbiol. Biotechnol., 2007, vol. 34, p. 381.CrossRefPubMedGoogle Scholar
  56. 56.
    Kishida, H., Jin, F., Zhou, Z., Moriya, T., and Enomoto, H., Chem. Lett., 2005, vol. 34, p. 1560.CrossRefGoogle Scholar
  57. 57.
    Shen, Z., Jin, F., Zhang, Y., Wu, B., Kishita, A., Tohji, K., and Kishida, H., Ind. Eng. Chem. Res., 2009, vol. 48, p. 8920.CrossRefGoogle Scholar
  58. 58.
    Ramírez-López, C.A., Ochoa-Gómez, J.R., Fernández-Santos, M., Gómez-Jiménez-Aberasturi, O., Alonso-Vicario, A., and Torrecilla-Soria, J., Ind. Eng. Chem. Res., 2010, vol. 49, p. 6270.CrossRefGoogle Scholar
  59. 59.
    Chen, L., Ren, S., and Ye, X.P., Fuel Process. Technol., 2014, vol. 120, p. 40.CrossRefGoogle Scholar
  60. 60.
    Rodrigues, A., Maia, D., and Fernandes, F., Braz. J. Chem. Eng., 2015, vol. 32, p. 749.CrossRefGoogle Scholar
  61. 61.
    Liu, B. and Greeley, J., J. Phys. Chem. C, 2011, vol. 115, p. 19702.CrossRefGoogle Scholar
  62. 62.
    Zhang, Y., Shen, Z., Zhou, X., Zhang, M., and Jin, F., Green Chem., 2012, vol. 14, p. 3285.CrossRefGoogle Scholar
  63. 63.
    Yuksel, A., Koga, H., Sasaki, M., and Goto, M., Ind. Eng. Chem. Res., 2010, vol. 49, p. 1520.CrossRefGoogle Scholar
  64. 64.
    Long, Y. D., Fenf, G., Fang, Z., Jiang, L. Q., and Zhang, F., Bioresour. Technol., 2011, vol. 102, p. 6884.CrossRefPubMedGoogle Scholar
  65. 65.
    Moreira, A., Bruno, A., Souza, M., and Manfro, R., Fuel Process. Technol., 2016, vol. 144, p. 170.CrossRefGoogle Scholar
  66. 66.
    Roy, D., Subramaniam, B., and Chaudhari, R., ACS Catal., 2011, vol. 1, p. 548.CrossRefGoogle Scholar
  67. 67.
    Yin, H., Zhang, C., Yin, H., Gao, D., Shen, L., and Wang, A., Chem. Eng. J., 2016, vol. 288, p. 332.CrossRefGoogle Scholar
  68. 68.
    Oberhauser, W., Evangelisti, C., Tiozzo, C., Vizza, F., and Psaro, R., ACS Catal., 2016, vol. 6, p. 1671.CrossRefGoogle Scholar
  69. 69.
    Ftouni, J., Villandier, N., Auneau, F., Besson, M., Djakovitch, L., and Pinel, C., Catal. Today, 2015, vol. 257, p. 267.CrossRefGoogle Scholar
  70. 70.
    Shen, L., Yin, H., Yin, H., Liu, S., and Wang, A., J. Nanosci. Nanotechnol., 2017, vol. 17, p. 780.CrossRefGoogle Scholar
  71. 71.
    Haasterecht, T., Deelen, T.W., Jong, K.P., and Bitter, J.H., Catal. Sci. Technol., 2014, vol. 4, p. 2353.CrossRefGoogle Scholar
  72. 72.
    Checa, M., Auneau, F., Hidalgo-Carrillo, J., Marinas, A., Marinas, J., Pinel, C., and Urbano, F., Catal. Today, 2012, vol. 196, p. 91.CrossRefGoogle Scholar
  73. 73.
    Yang, G.-Y., Ke, Y.-H., Ren, H.-F., Liu, C.-L., Yang, R.-Z., and Dong, W.-S., Chem. Eng. J., 2016, vol. 283, p. 759.CrossRefGoogle Scholar
  74. 74.
    Yin, H., Yin, H., Wang, A., Shen, L., Liu, Y., and Zheng, Y., J. Nanosci. Nanotechnol., 2017, vol. 17, p. 1255.CrossRefPubMedGoogle Scholar
  75. 75.
    Palacio, R., Torres, S., Lopez, D., and Hernandez, D., Catal. Today, 2018, vol. 302, p. 196.CrossRefGoogle Scholar
  76. 76.
    Li, K.-T., Li, J.-Y., and Li, H.-H., J. Taiwan Inst. Chem. Eng., 2017, vol. 79, p. 74.CrossRefGoogle Scholar
  77. 77.
    Yin, H., Yin, H., Wang, A., and Shen, L., J. Ind. Eng. Chem., 2018, vol. 57, p. 226.CrossRefGoogle Scholar
  78. 78.
    Shen, Y., Zhang, S., Li, H., Ren, Y., and Liu, H., Chem.–Eur. J., 2010, vol. 16, p. 7368.CrossRefPubMedGoogle Scholar
  79. 79.
    Redina, E., Greish, A., Novikov, R., Strelkova, A., Kirichenko, O., Tkachenko, O., Kapustin, G., Sinev, I., Kustov, L., Catal. Today, 2015, vol. 246, p. 216.CrossRefGoogle Scholar
  80. 80.
    Lakshmanan, P., Upare, P.P., Le, N., Hwang, Y.K., Hwang, D.W., Lee, U., Kim, H.R., and Chang, J., Appl. Catal., A, 2013, vol. 468, p. 260.CrossRefGoogle Scholar
  81. 81.
    Purushothaman, R.K.P., Haveren, J., Es, D.S., Melian-Cabrera, I., Meeldijk, J.D., and Heeres, H.J., Appl. Catal., B, 2014, vol. 147, p. 92.CrossRefGoogle Scholar
  82. 82.
    Evans, C.D., Kondrat, S.A., Smith, P.J., Manning, T.D., Miedziak, P.J., Brett, G.L., Armstrong, R.D., Bartley, J.K., Taylor, S.H., Rosseinsky, M.J., and Hutchings, M.J., Faraday Discuss., 2016, vol. 188, p. 427.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Li, Y., Chen, S., Xu, J., Zhang, H., Zhao, Y., Wang, Y., and Liu, Z., Clean: Soil, Air, Water, 2014, vol. 42, p. 1140.Google Scholar
  84. 84.
    Zhang, C., Wang, T., Liu, X., and Ding, Y., Chin. J. Catal., 2016, vol. 37, p. 502.CrossRefGoogle Scholar
  85. 85.
    Arcanjo, R.A., Silva, Jr. I.J., Rodríguez-Castellón, E., Infantes-Molina, A., and Vieira, R.S., Catal. Today, 2017, vol. 279, p. 317.CrossRefGoogle Scholar
  86. 86.
    Shen, L., Zhou, X., Wang, A., Yin, H., Yin, H., and Cui, W., RSC Adv., 2017, vol. 7, p. 30725.CrossRefGoogle Scholar
  87. 87.
    Lam, C.H., Bloomfield, A.J., and Anastas, P., Green Chem., 2017, vol. 19, p. 1958.CrossRefGoogle Scholar
  88. 88.
    Purushothaman, R.K.P., Haveren, J., Mayoral, A., Melian-Cabrera, I., and Heeres, H.J., Top. Catal., 2014, vol. 57, p. 1445.CrossRefGoogle Scholar
  89. 89.
    Xu, J., Zhang, H., Zhao, Y., Yu, B., Chen, S., Li, Y., Hao, L., and Liu, Z., Green Chem., 2013, vol. 15, p. 1520.CrossRefGoogle Scholar
  90. 90.
    Cho, H.J., Chang, C., and Fan, W., Green Chem., 2014, vol. 16, p. 3428.CrossRefGoogle Scholar
  91. 91.
    Komanoya, T., Suzuki, A., Nakajima, K., Kitano, M., Kamata, K., and Hara, M., ChemCatChem, 2016, vol. 8, p. 1094.CrossRefGoogle Scholar
  92. 92.
    Dapsens, P.Y., Mondelli, C., and Perez-Ramırez, J., Chem. Soc. Rev., 2015, vol. 44, p. 7025.CrossRefPubMedGoogle Scholar
  93. 93.
    Okuhara, T., Chem. Rev., 2002, vol. 102, p. 3641.CrossRefPubMedGoogle Scholar
  94. 94.
    Ren, Y., Wang, M., Chen, X., Yue, B., and He, H., Materials, 2015, vol. 8, p. 1545.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Du, D.-Y., Qin, J.-S., Li, S.-L., Su, Z.-M., and Lan, Y.-Q., Chem. Soc. Rev., 2014, vol. 43, p. 4615.CrossRefPubMedGoogle Scholar
  96. 96.
    Wang, S.-S. and Yang, G.-Y., Chem. Rev., 2015, vol. 115, p. 4893.CrossRefPubMedGoogle Scholar
  97. 97.
    Babahydari, A.K., Fareghi-Alamdari, R., Hafshejani, S.M., Rudbari, H.A., and Farsani, M.R., J. Iran Chem. Soc., 2016, vol. 13, p. 1463.CrossRefGoogle Scholar
  98. 98.
    Kuwahara, Y., Yoshimura, Y., and Yamashita, H., Dalton Trans., 2017, vol. 46, p. 8415.CrossRefPubMedGoogle Scholar
  99. 99.
    Zhu, J., Wang, P.-C., and Lu, M., Catal. Sci. Technol., 2015, vol. 5, p. 3383.CrossRefGoogle Scholar
  100. 100.
    Tao, M., Yi, X., Delidovich, I., Palkovits, R., Shi, J., and Wang, X., ChemSusChem, 2015, vol. 8, p. 4195.CrossRefPubMedGoogle Scholar
  101. 101.
    Tao, M., Zhang, D., Deng, X., Li, X., Shi, J., and Wang, X., Chem. Commun., 2016, vol. 52, p. 3332.CrossRefGoogle Scholar
  102. 102.
    Tao, M., Zhang, D., Guan, H., Huang, G., and Wang, X., Sci. Rep., 2016, vol. 6, p. 29840.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Zavrazhnov
    • 1
    Email author
  • A. L. Esipovich
    • 1
    • 2
  • S. M. Danov
    • 1
  • S. Yu. Zlobin
    • 1
  • A. S. Belousov
    • 1
  1. 1.Nizhny Novgorod State Technical UniversityNizhny NovgorodRussia
  2. 2.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations