Kinetics and Catalysis

, Volume 59, Issue 4, pp 405–417 | Cite as

Theoretical Study of Interaction between Hydrogen and Small Pt–Sn Intermetallic Clusters

  • D. E. ZavelevEmail author
  • G. M. Zhidomirov
  • M. V. Tsodikov


Small clusters, which simulate the active sites of Pt–Sn intermetallics exhibiting a high level of activity and selectivity in the deoxygenation reaction of esters without the loss of carbon mass to form C1, C2, and carbon oxides, are constructed and studied with the density functional theory. Molecular adsorption of hydrogen, dissociation of hydrogen molecules at Pt sites, and transition of adsorbed hydrogen atoms from Pt to Sn are considered. The introduction of Sn significantly decreases the affinity of platinum to hydrogen, so that the transition of H atoms to Sn atoms is facilitated with the increase in the amount of Sn. A comparison of the activation energies for such a transition with those of the possible association of hydrogen atoms on tin and the molecular desorption of H2 showed that the hydrogen spillover in the Pt–Sn intermetallics should not lead to a significant accumulation of hydrogen on tin. In other words, in contrast to Pt atoms, Sn atoms probably cannot serve as active sites of hydrogen adsorption in the deoxygenation reaction.


platinum–tin catalysts intermetallic clusters hydrogen spillover density functional theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weishen, Y., Liwu, L., Yining, F., and Jingling, Z., Catal. Lett., 1992, vol. 12, nos. 1–3, p. 267.CrossRefGoogle Scholar
  2. 2.
    Hobson, M.C., Jr., Goresh, S.L., and Khare, G.P., J. Catal., 1993, vol. 142, no. 2, p. 641.CrossRefGoogle Scholar
  3. 3.
    Kuznetsov, V.I., Belyi, A.S., Yurchenko, E.N., Smolikov, M.D., Protasova, M.T., Zatolokina, E.V., and Duplyakin, V.K., J. Catal., 1986, vol. 99, no. 1, p. 159.CrossRefGoogle Scholar
  4. 4.
    Tsodikov, M.V., Chistyakov, A.V., and Netrusov, A.I., Produkty Biomassy i ikh prevrashcheniya v komponenty topliv i monomery (Products of Biomass and their Transformations into Components of Fuels and Monomers), Saarbrucken: LAMBERT Academic Publishing, 2017, vol. 181.Google Scholar
  5. 5.
    Chistyakov, A.V., Zharova, P.A., Tsodikov, M.V., Shapovalov, S.S., Pasynskii, A.A., Murzin, V.Yu., Gekhman, A.E., and Moiseev, I.I., Dokl. Akad. Nauk, 2015, vol. 460, no. 1, p. 57.Google Scholar
  6. 6.
    Shapovalov, S.S., Pasynskii, A.A., Torubaev, Yu.V., Skabitskii, I.V., Sheer, M., and Bodenshtainer, M., Russ. J. Coord. Chem., 2014, vol. 40, no. 3, p. 131.CrossRefGoogle Scholar
  7. 7.
    Li, Y.-X. and Klabunde, K.J., J. Catal., 1990, vol. 126, no. 1, p. 173.CrossRefGoogle Scholar
  8. 8.
    Srinivasan, R. and Davis, B.H., Appl. Catal., A., 1992, vol. 87, no. 1, p. 45.CrossRefGoogle Scholar
  9. 9.
    Nava, N. and Viveros, T., Hyperfine Interact., 1999, vol. 122, nos. 1–2, p. 147.CrossRefGoogle Scholar
  10. 10.
    Nava, N., Morales, M.A., Vanoni, W., Toledo, J.A., Baggio-Saitovitch, E., and Viveros, T., Hyperfine Interact., 2001, vol. 134, no. 1, p. 81.CrossRefGoogle Scholar
  11. 11.
    Durussel, Ph., Massara, R., and Feschotte, P., J. Alloys Compd., 1994, vol. 215, nos. 1–2, p. 175.CrossRefGoogle Scholar
  12. 12.
    Borgna, A., Stagg, S.M., and Resasco, D.E., J. Phys. Chem. B, 1998, vol. 102, no. 26, p. 5077.CrossRefGoogle Scholar
  13. 13.
    Chistyakov, A.V., Kriventsov, V.V., Naumkin, A.V., Pereyaslavtsev, A.Yu., Zharova, P.A., and Tsodikov, M.V., Neftekhimiya, 2016, vol. 56, no. 4, p. 375.Google Scholar
  14. 14.
    Huang, X., Su, Y., Sai, L., Zhao, J., and Kumar, V., J. Cluster Sci., 2015, vol. 26, p. 389.CrossRefGoogle Scholar
  15. 15.
    Kong, C., Han, Y.-X., Hou, L.-J., Wu, B.-W., and Geng, Z.-Y., Int. J. Hydrogen Energy, 2017, vol. 42, no. 25, p. 16157.CrossRefGoogle Scholar
  16. 16.
    Hauser, A.W., Horn, P.R., Head-Gordon, M., and Bell, A.T., Phys. Chem. Chem. Phys., 2016, vol. 18, no. 16, p. 10906.CrossRefPubMedGoogle Scholar
  17. 17.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865.CrossRefGoogle Scholar
  18. 18.
    Stevens, W.J., Basch, H., and Krauss, M., J. Chem. Phys., 1984, vol. 81, no. 12, p. 6026.CrossRefGoogle Scholar
  19. 19.
    Stevens, W.J., Krauss, M., Basch, H., and Jasien, P.G., Can. J. Chem., 1992, vol. 70, p. 612.CrossRefGoogle Scholar
  20. 20.
    Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, p. 151.CrossRefGoogle Scholar
  21. 21.
    Laikov, D.N. and Ustynyuk, Yu.A., Izv. Akad. Nauk, Ser. Khim., 2005, no. 3, p. 804.Google Scholar
  22. 22.
    Mulliken, R.S., J. Chem. Phys., 1955, vol. 23, p. 1833, 1841, 2338, 2343.CrossRefGoogle Scholar
  23. 23.
    Hirshfeld, F., Theor. Chim. Acta, 1977, vol. 44, p. 129.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. E. Zavelev
    • 1
    Email author
  • G. M. Zhidomirov
    • 2
    • 3
  • M. V. Tsodikov
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Higher School of EconomicsNational Research UniversityMoscowRussia

Personalised recommendations