Advertisement

Kinetics and Catalysis

, Volume 59, Issue 4, pp 521–531 | Cite as

Effect of the Composition of Initial Components and the Conditions of Activation on the Mechanochemical Synthesis of Magnesium–Aluminum Layered Double Hydroxides

  • L. N. StepanovaEmail author
  • O. B. Belskaya
  • A. V. Vasilevich
  • N. N. Leont’eva
  • O. N. Baklanova
  • V. A. Likholobov
3rd Russian Congress on Catalysis (May 22–26, 2017, Nizhny Novgorod)

Abstract

The MgAl layered double hydroxides (LDHs) were prepared by two-stage synthesis, which included mechanochemical activation at the first stage and the interaction of the resulting sample with distilled water at the second stage. The influence of the material of grinding bodies (steel and ceramics), the conditions of activation (activation time and the centripetal acceleration of balls), and the nature of initial compounds on the phase composition of the resulting products was investigated. It was established that the formation of a single-phase MgAl LDH was observed upon mechanochemical activation with the use of steel grinding bodies at an acceleration of 1000 m/s2 for 30 min. The samples prepared by a traditional coprecipitation method and a method that included a stage of mechanochemical activation possessed identical structural parameters. However, the mixed oxides formed upon the calcination of LDHs synthesized by mechanochemical activation were characterized by a more uniform pore space with a pore diameter of 4–5 nm with a developed specific surface.

Keywords

layered double hydroxides mechanochemical activation structure texture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goh, K.-H., Lim, T.-T., and Dong, Z., Water Res., 2008, vol. 42, p. 1343.CrossRefPubMedGoogle Scholar
  2. 2.
    Centi, G. and Perathoner, S., Microporous Mesoporous Mater., 2008, vol. 107, p. 3.CrossRefGoogle Scholar
  3. 3.
    Constantino, V.R.L. and Pinnavaia, T.J., Inorg. Chem., 1995, vol. 34, no. 4, p. 883.CrossRefGoogle Scholar
  4. 4.
    Choy, J.-H., Choi, S.-J., Oh, J.-M., and Park, T., Appl. Clay Sci., 2007, vol. 36, p. 122.CrossRefGoogle Scholar
  5. 5.
    Cavani, F., Catal. Today, 1991, vol. 11, p. 173.CrossRefGoogle Scholar
  6. 6.
    Figueras, F., Top. Catal., 2004, vol. 29, nos. 3–4, p. 189.CrossRefGoogle Scholar
  7. 7.
    Xie, W., Peng, H., and Chen, L., J. Mol. Catal. A: Chem., 2006, vol. 246, p. 24.CrossRefGoogle Scholar
  8. 8.
    Zhoua, W., Zhoua, J., Chena, Y., Cuia, A., Suna, F., Hea, M., Xub, Z., and Chen, Q., Appl. Catal., A, 2017, vol. 542, p. 191.CrossRefGoogle Scholar
  9. 9.
    Iguchia, S., Hasegawa, Y., Teramura, K., Hosokawa, S., and Tanaka, T., J. CO2 Util., 2016, vol. 15, p. 6.CrossRefGoogle Scholar
  10. 10.
    De Freitas Castro, K.A., Wypych, F., Antonangelo, A., Mantovani, K. M., Bail, A., Ucoski, G. M., Ciuffi, K. J., Cintra, T.E., and Nakagaki, S., J. Colloid Interface Sci., 2016, vol. 478, p. 374.CrossRefPubMedGoogle Scholar
  11. 11.
    Vlamidis, Y., Scavetta, E., Gazzano, M., and Tonelli, D., Electrochim. Acta, 2016, vol. 188, p. 653.CrossRefGoogle Scholar
  12. 12.
    Lin, X., Li, R., Lu, M., Chen, C., Li, D., Zhan, Y., and Jiang, L., Fuel, 2015, vol. 162, p. 271.CrossRefGoogle Scholar
  13. 13.
    Wan, S., Wang, S., Li, Y., and Gao, B., J. Ind. Eng. Chem., 2017, vol. 47, p. 246.CrossRefGoogle Scholar
  14. 14.
    Theiss, F.L., Ayoko, G.A., and Frost, R.L., Mater. Sci. Eng., C, 2017, vol. 77, p. 1228.CrossRefGoogle Scholar
  15. 15.
    Ji, H., Wu, W., Li, F., Yu, X., Fu, J., and Jia, L., J. Hazar. Mater., 2017, vol. 334, p. 212.CrossRefGoogle Scholar
  16. 16.
    Abou-El-Sherbini, K.S., Kenawy, I. M.M., Hafez, M.A.H., Lotfy, H.R., and AbdElbary Zaynab, M.E.A., J. Environ. Chem. Eng., 2015, vol. 3, issue 4, p. 2707.Google Scholar
  17. 17.
    Hassani, K.E., Beakou, B.H., Kalnina, D., Oukani, E., and Anouar, A., Appl. Clay Sci., 2017, vol. 140, p. 124.CrossRefGoogle Scholar
  18. 18.
    Zhao, J., Huang, Q., Liu, M., Dai, Y., Chen, J., Huang, H., Wen, Y., Zhu, X., Zhang, X., and Wei, Y., J. Colloid Interface Sci., 2017, vol. 505, p. 168.CrossRefPubMedGoogle Scholar
  19. 19.
    Guan, T., Fang, L., Lu, Y., Wu, F., Ling, F., Gao, J., Hu, B., Meng, F., and Jin, X., Colloids Surf., A., 2017, vol. 529, p. 907.CrossRefGoogle Scholar
  20. 20.
    Yang, F., Sun, S., Chen, X., Chang, Y., Zha, F., and Lei, Z., Appl. Clay Sci., 2016, vol. 123, p. 134.CrossRefGoogle Scholar
  21. 21.
    Peligro, F.R., Pavlovic, I., Rojas, R., and Barriga, C., Chem. Eng. J., 2016, vol. 306, p. 1035.CrossRefGoogle Scholar
  22. 22.
    Rahmanian, O., Maleki, M.H., and Dinari, M., J. Phys. Chem. Solids, 2017, vol. 184, p. 408.Google Scholar
  23. 23.
    Wang, N., Sun, J., Fan, H., and Ai, S., Talanta, 2016, vol. 148, p. 301.CrossRefPubMedGoogle Scholar
  24. 24.
    Phuong, N.T.K., Beak, M., Huy, B.T., and Lee, Y.-I., Chemosphere, 2016, vol. 146, p. 51.CrossRefGoogle Scholar
  25. 25.
    Jensen, N.D., Bjerring, M., and Nielsen, U.G., Solid State Nucl. Magn. Reson., 2016, vol. 78, p. 9.CrossRefPubMedGoogle Scholar
  26. 26.
    Bouaziz, Z., Soussan, L., Janot, J.-M., Lepoitevin, M., Bechelany, M., Djebbi, M.A., Amara, A.B.H., and Balme, S., Colloids Surf., B, 2017, vol. 157, p. 10.CrossRefGoogle Scholar
  27. 27.
    Lukashin, A.V., Chernysheva, M.V., Vertegel, A.A., and Tret’yakov, Yu.D., Dokl. Chem., 2003., vol. 388, nos. 1–3, p. 19.Google Scholar
  28. 28.
    Hamada, S., Ikeue, K., and Machida, M., Chem. Mater., 2005, vol. 17, p. 4873.CrossRefGoogle Scholar
  29. 29.
    Siddiqi, G., Sun, P., Galvita, V., and Bell, A.T., J. Catal., 2010, vol. 274, p. 200.CrossRefGoogle Scholar
  30. 30.
    Stepanova, L.N., Bel’skaya, O.B., Kazakov, M.O., and Likholobov, V.A., Kinet. Catal., 2013, vol. 54, no. 4, p. 505.CrossRefGoogle Scholar
  31. 31.
    Bel’skaya, O.B., Stepanova, L.N., Gulyaeva, T.I., Leont’eva, N.N., Zaikovskii, V.I., Salanov, A.N., and Likholobov, V.A., Kinet. Catal., 2016, vol. 57, no. 4, p. 546.CrossRefGoogle Scholar
  32. 32.
    Belskaya, O.B., Stepanova, L.N., Gulyaeva, T.I., Erenburg, S.B., Trubina, S.V., Kvashnina, K., Nizovskii, A.I., Kalinkin, A.V., Zaikovskii, V.I., Bukhtiyarov, V.I., and Likholobov, V.A., J. Catal., 2016, vol. 341, p. 13.CrossRefGoogle Scholar
  33. 33.
    Ay, A.N., Zümreoglu-Karan, B., and Mafra, L., Z. Anorg. Allg. Chem., 2009, vol. 635, p. 1470.CrossRefGoogle Scholar
  34. 34.
    Zhang, X., Qi, F., Li, S., Wei, S., and Zhow, J., Appl. Surf. Sci., 2012, vol. 259, p. 245–251.CrossRefGoogle Scholar
  35. 35.
    Zhang, X., and Li, S., Appl. Surf. Sci., 2013, vol. 274, p. 158.CrossRefGoogle Scholar
  36. 36.
    Zeng, M.-G., Huo, X.-L., Liu, S.-Q., Li, S.-R., and Li, X.-D., Appl. Surf. Sci., 2014, vol. 292, p. 1059.CrossRefGoogle Scholar
  37. 37.
    Khusnutdinov, V.R. and Isupov, V.P., Khimiya v Interesakh Ustoichiv. Razvitiya, 2009, vol. 17, p. 439.Google Scholar
  38. 38.
    Isupov, V.P., Chupakhina, L.E., and Mitrofanova, R.P., J. Mater. Synth. Process., 2000, vol. 8, no. 3/4, p. 251.CrossRefGoogle Scholar
  39. 39.
    Khusnutdinov, V.R. and Isupov, V.P., Khimiya v Interesakh Ustoichiv. Razvitiya, 2007, vol. 15, p. 371.Google Scholar
  40. 40.
    Tongamp, W., Zhang, Q., and Saito, F., J. Mater Sci., 2007, vol. 42, p. 9210.CrossRefGoogle Scholar
  41. 41.
    Tongamp, W., Zhang, Q., and Saito, F., Powder Technol., 2008, vol. 185, p. 43.CrossRefGoogle Scholar
  42. 42.
    Hongbo, Y., Meling, C., Xiuhui, W., and Hong, G., Arch. Metall. Mater., 2015, vol. 60. issue 2, p. 1455.CrossRefGoogle Scholar
  43. 43.
    Fahami, A. and Beall, G.W., Mater. Lett., 2016, vol. 165, p. 192.CrossRefGoogle Scholar
  44. 44.
    Fahami, A. and Beall, G.W., J. Solid State Chem., 2016, vol. 233, p. 422.CrossRefGoogle Scholar
  45. 45.
    Fahami, A. and Al-Hazmi, F.S., J. Alloys Compd., 2016, vol. 683, p. 100.CrossRefGoogle Scholar
  46. 46.
    Khusnutdinov, V.R. and Isupov, V.P., Neorg. Mater., 2008, vol. 44, no. 3, p. 315.CrossRefGoogle Scholar
  47. 47.
    Miata, S., Clays Clay Miner., 1975, vol. 23, p. 363.Google Scholar
  48. 48.
    Leont’eva, N.N., Cand. Sci. (Chem.) Dissertation, Omsk: OmGTU, 2013.Google Scholar
  49. 49.
    Stepanova, L.N., Belskaya, O.B., Baklanova, O.N., Vasilevich, A.V., and Likholobov, V.A., Procedia Eng., 2016, vol. 152, p. 672.CrossRefGoogle Scholar
  50. 50.
    Wang, Y., Luo, S., Wang, Z., and Fu, Y., Appl. Clay Sci., 2013, vols. 80–81, p. 334.CrossRefGoogle Scholar
  51. 51.
    Bel’skaya, O.B., Leont’eva, N.N., Gulyaeva, T.I., Drozdov, V.A., Doronin, V.P., Zaikovskii, V.I., and Likholobov, V.A., Kinet. Catal., 2011, vol. 52, no. 6, p. 761.CrossRefGoogle Scholar
  52. 52.
    Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Pure Appl. Chem., 1985, vol. 67, no. 4, p. 603.CrossRefGoogle Scholar
  53. 53.
    Koval’, L.M., Goivoronskaya, Yu.I., Potudanskaya, M.N., Bozhenkova, G.S., and Paukshtis, E.A., Russ. J. Phys. Chem. A, vol. 83, no. 5, p. 849.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. N. Stepanova
    • 1
    Email author
  • O. B. Belskaya
    • 1
  • A. V. Vasilevich
    • 1
  • N. N. Leont’eva
    • 1
  • O. N. Baklanova
    • 1
  • V. A. Likholobov
    • 1
  1. 1.Institute of Hydrocarbon Processing, Siberian BranchRussian Academy of SciencesOmskRussia

Personalised recommendations