Advertisement

Kinetics and Catalysis

, Volume 59, Issue 4, pp 532–543 | Cite as

Formation of Active Structures in Monolith Copper–Manganese Oxide Catalysts for Air-Heating Devices

  • N. V. ShikinaEmail author
  • S. A. Yashnik
  • A. A. Gavrilova
  • L. S. Dovlitova
  • S. R. Khairulin
  • G. S. Kozlova
  • Z. R. Ismagilov
3rd Russian Congress on Catalysis (May 22–26, 2017, Nizhny Novgorod)

Abstract

Impregnation catalysts based on CuO, MnOx, and CuO–MnOx with different Cu/Mn ratios supported on ceramic monoliths of alumina and silica are studied by BET, mercury porosimetry, X-ray diffraction analysis, transmission and scanning electron microscopy, temperature-programmed reduction with H2, diffuse reflectance electron spectroscopy, and differential dissolution. It is found that, in the butane oxidation reaction, CuO–MnOx catalysts exert a synergistic effect, which is attributed to the formation of highly defective phases of complex oxides of the nonstoichiometric spinel type with a large number of interparticle boundaries in the near-surface layers of the support.

Keywords

catalyst monolith support butane oxidation CuO MnOx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deluca, J.P. and Campbell, L.E., Advanced Materials in Catalysis, Academic Press: N.-Y, 1977, p. 293.CrossRefGoogle Scholar
  2. 2.
    Yashnik, S.A., Ismagilov, Z.R., Koptyug, I.V., Andrievskaya, I.P., Matveev, A.A., and Moulijn, J.A., Catal. Today, 2005, vol. 105, nos. 3–4, p.507.CrossRefGoogle Scholar
  3. 3.
    Govender, S. and Friedrich, H.B., Catalysts, 2017, vol. 7, p. 62.CrossRefGoogle Scholar
  4. 4.
    Shikina, N., Podyacheva, O., Kosarev, V., and Ismagilov, Z., Mater. Manuf. Processes, 2016, vol. 31, p. 1521.CrossRefGoogle Scholar
  5. 5.
    Gatica, J. M. and Vidal, H., J. Hazard. Mater, 2010, vol. 181, nos. 1–3, p. 9.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhou, T., Li, L., Cheng, J., and Hao, Z., Ceram. Int., 2010, vol. 36, no. 2, p. 529.CrossRefGoogle Scholar
  7. 7.
    Forzatti, P. and Groppi, G., Catal. Today, 1999, vol. 54, p. 165.CrossRefGoogle Scholar
  8. 8.
    Ismagilov, Z.R., Shkrabina, R.A., Kerzhentsev, M.A., Ushakov, V.A., Shikina, N.V., Arendarskii, D.A., Ovsyannikova, I.A., Rudina, N.A., Ostrovskii, Yu.V., and Zabortsev, G.M., Kinet. Catal., 1998, vol. 39, no. 5, p. 611.Google Scholar
  9. 9.
    Ismagilov, Z.R., Shkrabina, R.A., Arendarskii, D.A., and Shikina, N.V., Kinet. Catal., 1998, vol. 39, no. 5, p. 600.Google Scholar
  10. 10.
    Ismagilov, Z.R., Kerzhentsev, M.A., Yashnik, S.A., and Shikina, N.V., Rossiiskie Nanotekhnologii, 2009, vol. 4, nos. 11–12, p. 32.Google Scholar
  11. 11.
    Euzen, P., Le Gal, J.-H., Rebours, B., and Martin, G., Catal. Today, 1999, vol. 47, p. 19.CrossRefGoogle Scholar
  12. 12.
    Augustin, M., Fenske, D., Bardenhagen, I., Westphal, A., Knipper, M., Plaggenborg, T., Kolny-Olesiak, J., and Parisi, J., Beilstein J. Nanotechnol., 2015, no. 6, p. 47.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wu, Z., Tang, N., Xiao, L., Liu, Y., and Wang, H., J. Colloid. Interface Sci., 2010, vol. 352, p. 143.CrossRefPubMedGoogle Scholar
  14. 14.
    Pozan, G.S., J. Hazard. Mater., 2012, vols. 221–222, p. 124.CrossRefPubMedGoogle Scholar
  15. 15.
    Feng, Q., Kanoh, H., and Ooi, K., J. Mater. Chem., 1999, vol. 9, p. 319.CrossRefGoogle Scholar
  16. 16.
    Kapteljn, F., Singoredjo, L., Andreini, A., and Moulijn, J.A., Appl. Catal., B, 1994, vol. 3, p. 173.CrossRefGoogle Scholar
  17. 17.
    Xiao, J., Wan, L., Wang, X., Kuang, Q., Dong, S., Xiao, F., and Wang, S., J. Mater. Chem. A, 2014, vol. 2, p. 3794.CrossRefGoogle Scholar
  18. 18.
    Craciun, R., Nentwich, B., Hadjiivanou, K., and Knözinger, H., Appl. Catal., A, 2003, vol. 243, p. 67.CrossRefGoogle Scholar
  19. 19.
    Hanfeng, L., Ying, Z., Haifeng, H., Bo, Z., and Yinfei, C., J. Rare Earths, 2011, vol. 29, no. 9, p. 855.CrossRefGoogle Scholar
  20. 20.
    Morales, M.R., Barbero, B.P., and Cadús, L.E., Appl. Catal., B, 2006, vol. 67, p. 229.CrossRefGoogle Scholar
  21. 21.
    Lu, H., Kong, X., Huang, H., Zhou, Y., and Chen, Y., J. Environ. Sci., 2015, vol. 32, p. 102.CrossRefGoogle Scholar
  22. 22.
    El-Shobaky, G.A., El-Shobaky, H.G., Badawy, A.A.A., and Fahmy, Y.M., Appl. Catal., A, 2011, vols. 409–410, p. 234.CrossRefGoogle Scholar
  23. 23.
    Malakhov, V.V and Vasil’eva, I.G., Usp. Khim., 2008, vol. 77, no. 4, p. 370.CrossRefGoogle Scholar
  24. 24.
    Sarkany, J., D’Itri, J.L., and Sachtler, W.M.H., Catal. Lett., 1992, vol.16, p. 241.CrossRefGoogle Scholar
  25. 25.
    Bulanek, R., Wichterlova, B., Sobalık, Z., and Tichy, J., Appl. Catal., B, 2001, vol. 31, p. 13.CrossRefGoogle Scholar
  26. 26.
    Kapteijn, F., Vanlangeveld, A.D., Moulijn, J.A., Andreiini, A., Vuurman, M.A., Turek, A.M., Jehng, J.M., and Wachs, I.E., J. Catal., 1994, vol. 150, p. 94.CrossRefGoogle Scholar
  27. 27.
    Ivanova, A.S., Slavinskaya, E.M., Mokrinskii, V.V., Polukhina, I.A., Tsybulya, S.V., Prosvirin, I.P., Bukhtiyarov, V.I., Rogov, V.A., Zaikovskii, V.I., and Noskov, A.S., J. Catal., 2004, vol. 221, p. 213.CrossRefGoogle Scholar
  28. 28.
    Ferrandon, M., Carno, J., Jaeras, S., and Bjoernbom, E., Appl. Catal., A, 1999, vol. 180, p. 141.CrossRefGoogle Scholar
  29. 29.
    Strohmeier, B.R. and Hercules, D.M., J. Phys. Chem, 1984, vol. 88, p. 4922.CrossRefGoogle Scholar
  30. 30.
    Aboukais, A., Abi-Aad, E., and Taouk, B., Mater. Chem. Phys., 2013, vol. 142, p. 564.CrossRefGoogle Scholar
  31. 31.
    Yashnik, S.A., Ismagilov, Z.R., Porsin, A.V., Denisov, S.P., and Danchenko, N.M., Top. Catal., 2007, vols. 42–43, nos. 1–4, p. 465.CrossRefGoogle Scholar
  32. 32.
    Yashnik, S.A., Ismagilov, Z.R., Denisov, S.P., and Danchenko, N.M., Appl. Catal., B, 2016, vol. 185, p. 322.CrossRefGoogle Scholar
  33. 33.
    Yashnik, S.A., Chesalov, Y.A., Ishchenko, A.V., Kaichev, V.V., and Ismagilov, Z.R., Appl. Catal., B, 2017, vol. 204, p. 89.CrossRefGoogle Scholar
  34. 34.
    Gandıa, L.M., Vicente, M.A., and Gil, A., Appl. Catal., A, 2000, vol. 196, p. 281.CrossRefGoogle Scholar
  35. 35.
    Hutchings, G.J., Mirzaei, A.A., Joyner, R. W., Siddiqui, M.R.H., and Taylor, S.H., Appl. Catal. A, 1998, vol. 166, p. 143.CrossRefGoogle Scholar
  36. 36.
    Tanaka, Y., Utaka, T., Kikuchi, R., Takeguchi, T., Sasaki, K., and Eguchi, K., J. Catal., 2003, vol. 215, p. 271.CrossRefGoogle Scholar
  37. 37.
    Tanaka, Y., Takeguchi, T., Kikuchi, R., Eguchi, K., Appl. Catal., A, 2005, vol. 279, p. 59.CrossRefGoogle Scholar
  38. 38.
    Lever, A.B.P., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1968.Google Scholar
  39. 39.
    Mott, N.F. and Davis, E.A., Electronic Processes in Non‐Crystalline Materials, Oxford: Clarendon Press, 1971.Google Scholar
  40. 40.
    Yashnik, S.A. and Ismagilov, Z.R., Appl. Catal., B, 2015, vol. 170, p. 241.CrossRefGoogle Scholar
  41. 41.
    Yashnik, S.A. and Ismagilov, Z.R., Kinet. Catal., 2016, vol. 57, no. 6, p. 777.CrossRefGoogle Scholar
  42. 42.
    Kijlstra, W.S., Poels, E.K., Bliek, A., Weckhuysen, B.M., and Schoonheydt, R.A., J. Phys. Chem. B, 1997, vol. 101, p. 309.CrossRefGoogle Scholar
  43. 43.
    Wan, H., Li, D., Dai, Y., Hu, Y., Liu, B., and Dong, L., J. Mol. Catal. A: Chem., 2010, vol. 332, p. 32.CrossRefGoogle Scholar
  44. 44.
    Ismagilov, I.Z., Matus, E.V., Kuznetsov, V.V., Kerzhentsev, M.A., Yashnik, S.A., Larina, T.V., Prosvirin, I.P., Navarro, R.M., Fierro, J.L.G., Gerritsen, G., Abbenhuis, H.C.L., and Ismagilov, Z.R., Eurasian Chem.-Technol. J., 2016, vol. 18, p. 93.CrossRefGoogle Scholar
  45. 45.
    Parida, K.M., Dash, S.S., and Singha, S., Appl. Catal., A, 2008, vol. 351, p. 59.CrossRefGoogle Scholar
  46. 46.
    Krivoruchko, O.P., Anufrienko, V.F., Paukshtis, E.A., Larina, T.V., Burgina, E.B., Yashnik, S.A., Ismagilov, Z.R., and Parmon, V.N., Dokl. Phys. Chem., 2004, vol. 398, no. 3, p. 356.Google Scholar
  47. 47.
    Yashnik, S.A., Ishchenko, A.V., Dovlitova, L.S., and Ismagilov, Z.R., Top. Catal., 2017, vol. 60, p. 52.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. V. Shikina
    • 1
    Email author
  • S. A. Yashnik
    • 1
  • A. A. Gavrilova
    • 1
  • L. S. Dovlitova
    • 1
  • S. R. Khairulin
    • 1
  • G. S. Kozlova
    • 2
  • Z. R. Ismagilov
    • 1
    • 3
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Center for Collective Use, Federal Research Center for Coal and Coal Chemistry, Siberian BranchRussian Academy of SciencesKemerovoRussia
  3. 3.Institute of Coal Chemistry and Chemical Materials Science, Federal Research Center for Coal and Coal Chemistry, Siberian BranchRussian Academy of SciencesKemerovoRussia

Personalised recommendations