Advertisement

Kinetics and Catalysis

, Volume 59, Issue 4, pp 498–503 | Cite as

Metal–Polymer Nanocomposites with Carbon Fillers for the Catalytic Oxidation of Formic Acid

  • M. V. Lebedeva
  • N. A. YashtulovEmail author
  • V. R. Flid
Article

Abstract

Metal–polymer Pt–Pd nanocomposites on a Nafion polymer membrane modified with carbon nanotubes and carbon black are synthesized by the chemical reduction of ions in aqueous organic solutions of reverse microemulsions. The functional characteristics of the nanocomposites are studied by cyclic voltammetry and atomic force microscopy. The synthesized nanocomposites exhibit strong catalytic activity in the formic acid oxidation reaction. It is found that, at the optimum ratio of platinum metals, the catalytic activity of the metal–polymer composites is higher than that of the carbon nanocomposites.

Keywords

metal–polymer nanocomposites platinum–palladium nanoparticles carbon nanotubes catalytic activity cyclic voltammetry chronopotentiometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brandon, N., Boldrin, P., and Ruiz-Trejo, E., Organic-Inorganic Composite Polymer Electrolyte Membranes: Preparation, Properties, and Fuel Cell Applications, Cham: Springer, 2017, p. 460.Google Scholar
  2. 2.
    Ozoemena, K.I. and Chen, S., Nanostructure Science and Technology. Nanomaterials for Fuel Cell Catalysis, Berlin: Springer, 2016, p. 583.CrossRefGoogle Scholar
  3. 3.
    Antropov, A.P., Ragutkin, A.V., and Yashtulov, N.A., International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2016, vol. 10, no. 12, p. 1346.Google Scholar
  4. 4.
    Leung, D.Y.C. and Xuan, J., Micro & Nano-Engineering of Fuel Cells, Leiden: CRC, 2015, p. 338.CrossRefGoogle Scholar
  5. 5.
    Yashtulov, N.A., Gavrin, S.S., Bondarenko, V.P., Kholostov, K.I., Revina, A.A., and Flid, V.R., Izv. Akad. Nauk, Ser. Khim., 2011, vol. 60, no. 3, p. 425.Google Scholar
  6. 6.
    Hartnig, C. and Roth, C., Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology. In-situ Characterization Techniques for Low Temperature Fuel Cells, Woodhead Publishing, 2012, vol. 2, p. 516.Google Scholar
  7. 7.
    Rabis, A., Paramaconi, R., and Schmidt, T.J., ACS Catal., 2012, vol. 2, no. 5, p. 864.CrossRefGoogle Scholar
  8. 8.
    Yashtulov, N.A., Lebedeva, M.V., Myasnikova, N.V., Ragutkin, A.V., and Flid, V.R., Izv. Akad. Nauk, Ser. Khim., 2017, vol. 66, no. 3, p. 474.Google Scholar
  9. 9.
    Lee, D.C., Yang, H.N., Park, S.H., and Kim, W.J., Membrane Sci., 2014, vol. 452, no. 1, p. 20.CrossRefGoogle Scholar
  10. 10.
    Liu, Y.H., Yi, B., Shao, Z.G., Wang, L., Xing, D., and Zhang, H., J. Power Sources, 2007, vol. 163, p. 807.CrossRefGoogle Scholar
  11. 11.
    Wang, Y., Nanomaterials for Direct Alcohol Fuel Cell, Singapore: Pan Stanford Publishing Pte. Ltd., 2017, p. 298.Google Scholar
  12. 12.
    Lebedeva, M.V., Yashtulov, N.A., and Flid, V.R., Kinet. Catal., 2016, vol. 57, no. 6, p. 850.CrossRefGoogle Scholar
  13. 13.
    Yashtulov, N.A. and Flid, V.R., Izv. Akad. Nauk, Ser. Khim., 2013, vol. 60, no. 6, p. 1332.Google Scholar
  14. 14.
    Battirola, L.C., Schneider, J.F., Torriani, I.C.L., and Tremiliosi-Filho, G., Int. J. Hydrogen Energy, 2013, vol. 38, no. 27, p. 12060.CrossRefGoogle Scholar
  15. 15.
    Sode, A., Ingle, N.J.C., McCormick, M., Bizzotto, D., Gyenge, E., Ye, S., Knights, S., and Wilkinson, D.P., J. Membrane Sci., 2011, vol. 376, nos. 1–2, p. 162.CrossRefGoogle Scholar
  16. 16.
    Ahmed, M., Attard, G.A., Wright, E., and Sharman, J., Catal. Today, 2013, vol. 202, p. 128.CrossRefGoogle Scholar
  17. 17.
    Yang, H.N., Lee, D.C., Park, S.H., and Kim, W.J., J. Membrane Sci., 2013, vol. 443, p. 210.CrossRefGoogle Scholar
  18. 18.
    Hong, P., Luo, F., Liao, S., and Zeng, J., Int. J. Hydrogen Energy, 2011, vol. 36, no. 14, p. 8518.CrossRefGoogle Scholar
  19. 19.
    Winjobi, O., Zhang, Z., Liang, C., and Li, W., Electrochim. Acta, 2010, vol. 55, no. 13, p. 4217.CrossRefGoogle Scholar
  20. 20.
    Sode, A., Ingle, N.J.C., McCormick, M., Bizzotto, D., Gyenge, E., Ye, S., Knights, S., and Wilkinson, D.P., J. Membrane Sci., 2011, vol. 376, p. 162.CrossRefGoogle Scholar
  21. 21.
    Yashtulov, N.A., Patrikeev, L.N., Zenchenko, V.O., Lebedeva, M.V., Zaitsev, N.K., and Flid, V.R., Nanotechnol. Russ., 2016, vol. 11, nos. 9–10, p. 45.Google Scholar
  22. 22.
    Goral-Kurbiel, M., Kosydar, R., Gurgul, J., Dembinska, B., Kulesza, P.J., and Drelinkiewicz, A., Electrochim. Acta, 2016, vol. 222, p. 1220.CrossRefGoogle Scholar
  23. 23.
    Novikov, D.V., Tarasevich, M.R., Bogdanovskaya, V.A., Andoralov, V.M., and Zhutaeva, G.V., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 4, p. 367.CrossRefGoogle Scholar
  24. 24.
    Krylov, O.V., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Akademkniga, 2004.Google Scholar
  25. 25.
    Yashtulov, N.A., Gavrin, S.S., Revina, A.A., and Flid, V.R., Izv. Akad. Nauk, Ser. Khim., 2010, vol. 59, no. 8, p. 1450.Google Scholar
  26. 26.
    Yashtulov, N.A., Lebedeva, M.V., and Flid, V.R., Izv. Akad. Nauk, Ser. Khim., 2015, vol. 64, no. 8, p. 1837.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Lebedeva
    • 1
  • N. A. Yashtulov
    • 1
    Email author
  • V. R. Flid
    • 1
  1. 1.Lomonosov Institute of Fine Chemical TechnologiesMoscow Technological UniversityMoscowRussia

Personalised recommendations