Kinetics and Catalysis

, Volume 59, Issue 4, pp 489–497 | Cite as

Catalytic Activity of La1 – xCaxCoO3 – δ Perovskites (х = 0−1) Prepared by the Pechini Method in the Reaction of Deep Methane Oxidation

  • L. A. IsupovaEmail author
  • N. A. Kulikovskaya
  • N. F. Saputina
  • E. Yu. Gerasimov


The catalytic activity of a series of the perovskite-like oxides La1–xCaxCoO3–δ (x = 0–1) prepared by the Pechini method (from polymer–salt compositions) in the reaction of methane oxidation was studied. The dependence of the activity and stability of samples on their composition and reaction temperature was revealed. It was found that an increase in the calcium content of the oxides initially led to an increase in the activity (to the values of x = 0.3) and then to a nonmonotonic decrease with an intermediate maximum at x = 0.6. A decrease in the activity of oxides in the course of testing, which was most pronounced in the samples with x = 0.3, 0.6, and 1, was found. The phase compositions, specific surface areas, and microstructures of the oxides were determined before and after tests. According to X-ray diffraction analysis data, only the samples with x = 0–0.4 were single-phase ones; the samples with x > 0.4 were two-phase samples containing the phases of perovskite and brownmillerite. With the use of high-resolution transmission electron microscopy, it was found that the surface of particles was covered with the nanosized particles of simple calcium and cobalt oxides, and the particles of brownmillerite were present in the samples with x ≥ 0.4. The observed increase in the catalytic activity of the samples in a region to x = 0.3 correlated with an increase in the concentration of weakly bound oxygen in the perovskites, and a decrease at x > 0.3, with the appearance of the less active phase of brownmillerite in the samples and an increase in its concentration. The phase composition and the specific surface area of the samples remained unchanged after tests; however, planar defects were detected in the particles of perovskite and the calcium content on the surface increased. This was caused by the appearance and ordering of cationic and anionic vacancies under the action of a reaction medium, which can explain the observed changes in the activity of the samples.


La1 – xCaxCoO3 – δ perovskites methane oxidation stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Malkhand, S., Yang, B., Manohar, A.K., Manivannan, A., Prakash, G.S., and Narayanan, S.R., J. Phys. Chem. Lett., 2012, vol. 3, no. 8, p. 967.CrossRefGoogle Scholar
  2. 2.
    Setevich, C., Mogni, L., and F. Prado, F., Electrochem. Soc., 2012, vol. 159, no. 1, p. B72–B79. doi 10.1149/2.043201jesJCrossRefGoogle Scholar
  3. 3.
    Solid state electrochemistry II. Electrodes, interfaces and ceramic membraners, Kharton, V.V., Ed., Wiley-VCH, 2011, p. 576.Google Scholar
  4. 4.
    Isupova, L.A., Sadykov, V.A., Ivanov, V.P., Rar, A.A., Tsybulya, S.V., Andrianova, M.A., Kolomiichuyk, V.N., Petrov, A.N., and Kononchuk, O.F., React. Kinet. Catal. Lett. 1994, vol. 53, 1, p. 223.CrossRefGoogle Scholar
  5. 5.
    Merino N.A., Barbero B.P., Cellier C., Gamboa J.A., and Cadús L.E., Catal. Lett., 2007, vol. 113, no. 3–4, p. 130.CrossRefGoogle Scholar
  6. 6.
    Wu, Y., Yu, T., Dou, B.-S., Wang, C.-X., Fan, X.-R., and Wang, L.-C., J. Catal., 1989, vol. 120, p. 88.CrossRefGoogle Scholar
  7. 7.
    Luu, T.H., Dung Nguyen, X., Huyen Phan, T.M., Schulze, S., and Hietschold, M., Adv. Nat. Sci.: Nanosci. Nanotechnol., 2015, vol. 6, no. 2, p. 025016. doi 10.1088/2043-6262/6/2/025016Google Scholar
  8. 8.
    Wong, Ng.W., Lawz, W.J., and Yan, Y.G., Solid State Sci., 2013, vol. 17, p. 107.CrossRefGoogle Scholar
  9. 9.
    Cherepanov, V.A., Gavrilova, L.Ya, Barkhatova, L.Yu., Voronin, V.I., Trifonova, M.V., and Bukhner, O.A., Ionics, 1998, vol. 4, p. 309.CrossRefGoogle Scholar
  10. 10.
    Gavrilova, L.Ya., Cherepanov, V.A., Surova, T.V., Baimistruk, V.A., and Voronin, V.I., Russ. J. Phys. Chem. A, 2002, vol. 76, no. 2, p. 210.Google Scholar
  11. 11.
    Mastin, J., Einarsrud, M.-A., and Grande, T., Chem. Mater., 2006, vol. 18, p. 1680.CrossRefGoogle Scholar
  12. 12.
    Kononyuk, I.F., Tolochko, AS.P., Lutsko, V.A., and Anishchik, V.M., J. Solid State Chem., 1983, 48, p. 209.CrossRefGoogle Scholar
  13. 13.
    Melo, D.S., Marinho, E.P., Soledade, L.E.B., Melo, D.M.A., Lima, S.J.G., Longo, E., Santos, I.M.G., and Souza, A.G., J. Mater. Sci., 2008, vol. 43, p. 551.CrossRefGoogle Scholar
  14. 14.
    Pathak, S., Kuebler, J., Payzant, A., and Orliovskaya, N., J. Power Sources, 2010, vol. 195, p. 3612.CrossRefGoogle Scholar
  15. 15.
    Merino, N.A., Barbero, B.P., Grande, P., and Cadus, L.E., J. Catal., 2005, vol. 231, p. 232.CrossRefGoogle Scholar
  16. 16.
    Merino, N.A., Barbero, B., Eloy, P., and Cadus, L.E., J. Appl. Suf. Sci., 2006, vol. 253, p. 1489.CrossRefGoogle Scholar
  17. 17.
    Kumar, D.A., Selvasekarapandian, S., Nithya, H., Leiro, J., and Masuda, Y., Power Technol., 2013, vol. 235, p. 140.CrossRefGoogle Scholar
  18. 18.
    Haas, O., Ludwig, Chr., Bergmann, U., Singh, R.N., Braun, A., and Graule, T., J. Solid. State Chem., 2011, vol. 184, p. 3163.CrossRefGoogle Scholar
  19. 19.
    Nadeev, A.N., Tsybulya, S.V., Belyaev, V.D., Yakovleva, I.S., and Isupova, L.A., J. Struct. Chem., 2008, vol. 49, no. 6, p. 1077.CrossRefGoogle Scholar
  20. 20.
    Gerasimov, E.Yu., Isupova, L.A., and Tsybulya, S.V., MRS Bull., 2015, vol. 70, p. 291. doi 10.1016/j.materresbull. 2015.04.041CrossRefGoogle Scholar
  21. 21.
    Isupova, L.A., Kulikovskaya, N.A., Saputina, N.F., Tsybulya, S.V., and Gerasimov, E.Yu., Kinet. Catal., 2015, vol. 56, no. 6, p. 770. doi 10.7868/S0453881115050093CrossRefGoogle Scholar
  22. 22.
    Isupova, L.A., Gerasimov, E.Yu., Zaikovskii, V.I., and Tsybulya, S.V., Kinet. Catal., 2011, vol. 52, no. 1, p. 106.CrossRefGoogle Scholar
  23. 23.
    Gerasimov, E.Yu., Zaikovskii, V.I., Tsybulya, S.V., and Isupova, L.A., Poverkhnost’. Rentgenovskie, Sinkhrotronnye i neitronnye issledovaniya, 2009, no. 10, p. 10.Google Scholar
  24. 24.
    Isupova, L.A., Gerasimov, E.Yu., Zaikovskii, V.I., and Tsybulya, S.V., Kinet. Catal., 2011, vol. 52, no. 1, p. 104.CrossRefGoogle Scholar
  25. 25.
    Futai, M. and Yonghua, Ch., React. Kinet. Catal. Lett., 1986, vol. 31, no. 1, p. 47.CrossRefGoogle Scholar
  26. 26.
    Yakovleva, I.S., Isupova, L.A., and Rogov, V.A., Kinet. Catal., 2009, vol. 50, no. 2, p. 275.CrossRefGoogle Scholar
  27. 27.
    Gerasimov, E., Kulikovskaya, N., Chuvilin, A., Isupova, L., and Tsybulya, S., Top. Catal., 2016, vol. 59, nos. 15–16, p. 1354. 10.1007/s11244-016-0661-4CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. A. Isupova
    • 1
    Email author
  • N. A. Kulikovskaya
    • 1
  • N. F. Saputina
    • 1
  • E. Yu. Gerasimov
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations