Influence of Method of Introduction of Cu- and Zn-Based Modifiers on the Properties of Chromia–Alumina Catalysts

Abstract

Three methods of introduction of modifiers based on Cu and Zn compounds into the CrOx/Al2O3 catalysts for dehydrogenation of light paraffin hydrocarbons are considered: Introduction from sol, introduction using successive impregnation technique and introduction of modifiers by impregnation along with precursor of chromium oxide. The obtained samples are studied by a complex of physical-chemical methods (XRD, UV-Vis spectroscopy, temperature-programmed reduction with hydrogen (TPR-H2), X-ray fluorescent (XRF) spectrometry, low-temperature N2 sorption). The catalytic properties of the samples are studied in kinetic mode in isobutane dehydrogenation. Cu- and Zn-modifiers are shown to influence on the peculiarities of reduction of Cr6+ and, hence, specify the state of active surface of CrOx/Al2O3 catalysts formed in the reductive reaction medium. Not only do the states of modifiers influence on the initial activity of the catalyst, but also on its activity after oxidative regeneration. Introduction of modifiers by successive impregnation method results in formation of copper and zinc aluminates or defective spinels on the Al2O3 surface. When the active component is introduced, the modified surface of the support promotes formation and stabilization of Cr6+ sites that can undergo reversible reduction–oxidation and provide high activity and selectivity towards formation of isobutylene (>98%).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Sattler, J.J.H.B., Ruiz-Martinez, J., Santillan-Jimenez, E., and Weckhuysen, B.M., Chem. Rev., 2014, vol. 114, p. 10613.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Sanz, S.G., McMillan, L., McGregor, J., Zeitler, J.A., Al-Yassir, N., Al-Khattaf, S., and Gladden, L.F., Catal. Sci. Technol., 2016, vol. 6, p. 1120.

    Article  CAS  Google Scholar 

  3. 3.

    Pakhomov, A.N., Nauchnye Osnovy prigotovleniya katalizatorov: vvedenie v teoriyu i praktiku (Scientific features of catalysts preparation: introduction to theory and practice), Izd-vo SO RAN, 2011, p.262.

    Google Scholar 

  4. 4.

    Tyuryaev, I.Ya., Teoreticheskie osnovy polucheniya butadiena i izoprena metodami degidrirovaniya (Theoretical fundamentals of butadiene and isoprene synthesis by dehydrogenation), Kiev: Naukova Dumka, 1973.

    Google Scholar 

  5. 5.

    Rubinstein, A.M., Pribytkova, N.A., Afanas’ev, V.A., and Slinkin, A.A., Actes 2-me Congr. Int. Catal. P.: Technip., 1961, vol. 2, p. 1981.

    Google Scholar 

  6. 6.

    Carra, S. and Forni, L., Catal. Rev.: Sci. and Eng., 1972, p.159.

    Google Scholar 

  7. 7.

    Kotel’nikov, G.R., Strunnikova, A.V., Patanov, V.A., and Arapova, I.P., Katalizatory degidrirovaniya nizshikh parafinovykh, olefinovykh i alkilaromaticheskikh uglevodorodov (Catalysts for the dehydrogenation of lower paraffinic, olefinic and alkylaromatic hydrocarbons), Moscow: TsNIITEneftekhim, 1978.

    Google Scholar 

  8. 8.

    Shee, D. and Sayari, A., Appl. Catal., A, 2010, vol. 389, p.155.

    Article  CAS  Google Scholar 

  9. 9.

    Yang, X., Sol–gel synthesized nanomaterials for environmental applications, PhD-thesis K. K-State, 2008, p.177.

    Google Scholar 

  10. 10.

    Xu, L., Wang, Z., Song, H., and Chou, L., Catal. Commun., 2013, vol. 35, p.76.

    Article  CAS  Google Scholar 

  11. 11.

    Zhao, H., Song, H., Xu, L., and Chou, L., Appl. Catal., A, 2013, vol. 456, p.188.

    Article  CAS  Google Scholar 

  12. 12.

    Lebedev, N.N., Khimiya i tekhnologiya osnovnogo organicheskogo i neftekhimicheskogo sinteza (Chemistry and technology of basic organic and non-petrochemical synthetics), Moscow: Khimiya, 1981.

    Google Scholar 

  13. 13.

    Rombi, E., Cutrufello, M.G., Solinas, V., De Rossi, S., Ferraris, G., and Pistone, A., Appl. Catal., A, 2003, p.255.

    Google Scholar 

  14. 14.

    Neri, G., Pistone, A., De Rossi, S., Rombi, E., Milone, C., and Galvagno, S., Appl. Catal., A, 2004, vol. 260, p.75.

    Article  CAS  Google Scholar 

  15. 15.

    Beccari, M. and Romano, U., Encyclopaedia of hydrocarbons, Rome: ENI & Istituto della Enciclopedia Italiana G. Treccani, 2006, vol. 2, p.687.

    Google Scholar 

  16. 16.

    RF Patent 2176157, 2001.

  17. 17.

    US Patent 6362385 B1, 2002.

  18. 18.

    US Patent 20050075243 A1, 2005.

  19. 19.

    RF Patent 2325227, 2008.

  20. 20.

    RF Patent 2448770, 2012.

  21. 21.

    Bahmani, M., Farahani, B.V., and Sahebdelfar, S., Appl. Catal., A, 2016, vol. 520, p. 178

    Article  CAS  Google Scholar 

  22. 22.

    Sameh, M.K., Aboul-fotouh, Fuel Chem. Technol., 2014, vol. 42, p.350.

    Article  Google Scholar 

  23. 23.

    Debecker, D.P., Stoyanova, M., Colbeau-Justin, F., Rodemerck, U., Boissire, C., Gaigneaux, E.M., and Sanchez, C., Angew. Chem., 2012, vol. 51, p. 2129.

    Article  CAS  Google Scholar 

  24. 24.

    Kirszensztejn, P. and Przekop, R., Annales UMCS, Chemia, 2011, vol. 66, p.12.

    CAS  Google Scholar 

  25. 25.

    Takeishi, K. and Akaike, Y., Appl. Catal., A, 2016, vol. 510, p.20.

    Article  CAS  Google Scholar 

  26. 26.

    Bugrova, T.A., Litvyakova, N.N., and Mamontov, G.V., Kinet. Catal., 2015, vol. 56, issue 6, p.758.

    Article  CAS  Google Scholar 

  27. 27.

    Kim, T.-W., Song, M.-W., Koh, H.-L., and Kim, K.-L., Appl. Catal., A, 2001, vol. 210, p.35.

    Article  CAS  Google Scholar 

  28. 28.

    Weckhusen, B.M., Verberckmoes, An.A., De Baets, A.R., and Schoonheydt, R.A., J. Catal., 1997, vol. 166, p.160.

    Article  Google Scholar 

  29. 29.

    Cavani, F., Koutyrev, M., Trifiro, F., Bartolini, A., Ghisletti, D., Iezzi, R., Santucci, A., and Del Piero, G., J. Catal., 1996, vol. 158, p.236.

    Article  CAS  Google Scholar 

  30. 30.

    Cutrufello, M.G., De Rossi, S., Ferino, I., et al., Thermochim. Acta, 2005, vol. 434, p.62.

    Article  CAS  Google Scholar 

  31. 31.

    Yamamoto, T., Tanaka, T., Kuma, R., Suzuki, S., Amano, F., Shimooka, Y., Kohno, Y., Funabika, T., and Yoshida, S., Phys. Chem. Chem. Phys., 2002, vol. 4, p. 2449.

    Article  CAS  Google Scholar 

  32. 32.

    Smith, M.L., Campos, A., and Spivey, J., Catal. Today, 2012, vol. 182, p.60.

    Article  CAS  Google Scholar 

  33. 33.

    Fridman, V.Z., Xing, R., and Severance, M., Appl. Catal., A, 2016, vol. 523, p.39.

    Article  CAS  Google Scholar 

  34. 34.

    Luo, M.-F., Fang, P., He, M., and Xie, Y. -L, J. Mol. Catal. A: Chem., 2005, vol. 239, p.243.

    Article  CAS  Google Scholar 

  35. 35.

    Zhu, H., Dong, X., Shi, L., and Sun, Q., J. Nat. Gas Chem., 2010, vol. 19, p.67.

    Article  CAS  Google Scholar 

  36. 36.

    Maniecki, T.P., Mierczynski, P., and Jozwiak, W.K., Kinet. Catal., 2010, vol. 51, p.843.

    Article  CAS  Google Scholar 

  37. 37.

    Sattler, J.J.H.B., Mens, A.M., and Weckhuysen, B.M., ChemCatChem, 2014, vol. 6, p. 3139.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Merk.

Additional information

Original Russian Text © A.A. Merk, M.A. Salaev, O.V. Vodyankina, G.V. Mamontov, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 2, pp. 232–239.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Merk, A.A., Salaev, M.A., Vodyankina, O.V. et al. Influence of Method of Introduction of Cu- and Zn-Based Modifiers on the Properties of Chromia–Alumina Catalysts. Kinet Catal 59, 211–217 (2018). https://doi.org/10.1134/S0023158418020118

Download citation

Keywords

  • CrOx/Al2O3 catalysts
  • modification method
  • Cu- and Zn-based modifiers
  • state of active component
  • isobutane dehydrogenation