Skip to main content
Log in

High Carbon-Resistance Ni@CeO2 Core–Shell Catalysts for Dry Reforming of Methane

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Ni@CeO2 core–shell catalysts were synthesized via a facile surfactant-assisted hydrothermal method and their catalytic performance in the dry reforming of methane (DRM) reaction was evaluated. A variety of techniques including XRD, N2 adsorption–desorption, SEM, TEM, TPO, TGA were employed to characterize the prepared or spent catalysts. The encapsulation by the CeO2 shell, on one side, can restrict the sintering and growth of Ni nanoparticles under harsh reaction conditions. On the other side, compared to the conventional shell material of SiO2, CeO2 can provide more lattice oxygens and vacancies, which is helpful to suppress coke deposition. Consequently, the Ni@CeO2 core–shell catalysts exhibited better catalytic activity and stability in the DRM reaction with respect to the referenced Ni@SiO2 core–shell catalysts and Ni/CeO2 supported catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hu, Y.H. and Ruckenstein, E., Adv. Catal., 2004, vol. 48, p. 297.

    CAS  Google Scholar 

  2. Zhu, J., Peng, X., Yao, L., Shen, J., Tong, D., and Hu, C., Int. J. Hydrogen Energy, 2011, vol. 36, p. 7094.

    Article  CAS  Google Scholar 

  3. Muhammad, A.N., Ahmed, S. Al-F., Ahmed, E.A., and Anis, H.F., Fuel Process. Technol., 2014, vol. 122, p. 141.

    Article  Google Scholar 

  4. Mahesh, M.N., Serge, K., and Freddy, K., ACS Catal., 2014, vol. 4, p. 3837.

    Article  Google Scholar 

  5. Sajjadi, S.M., Haghighi, M., Eslami, A.A., and Rahmani, F., J. Sol–Gel Sci. Technol., 2013, vol. 67, p. 601.

    Article  CAS  Google Scholar 

  6. Shi, C., Zhang, S., Li, X., Zhang, A., Shi, M., Zhu, Y., Qiu, J., and Au, C., Catal. Today, 2014, vol. 233, p. 46.

    Article  CAS  Google Scholar 

  7. Li, B.T., Xu, X.J., and Zhang, S.Y., Int. J. Hydrogen Energy, 2013, vol. 38, p. 890.

    Article  CAS  Google Scholar 

  8. Kambolis, A., Matralis, H., Trovarelli, A., and Papadopoulou, C., Appl. Catal. A-Gen., 2010, vol. 377, p. 16.

    Article  CAS  Google Scholar 

  9. Chen, W., Sheng, W.Q., Zhao, G.F., Cao, F.H., Xue, Q.S., Chen, L., and Lu, Y., RSC Adv., 2012, vol. 2, p. 3651.

    Article  CAS  Google Scholar 

  10. Chen, X., Honda, K., and Zhang, Z.G., Appl. Catal. A-Gen., 2005, vol. 288, p. 86.

    Article  CAS  Google Scholar 

  11. Schärtl, W., Nanoscale, 2010, vol. 2, p. 829.

    Article  Google Scholar 

  12. Qiao, Z., Ilkeun, L., Ji, B.J., Francisco, Z., and Yadong, Y., Accounts Chem. Res., 2013, vol. 46, p. 1816.

    Article  Google Scholar 

  13. Yao, L.H., Li, Y.X., Zhao, J., Ji, W.J., and Au, C.T., Catal. Today, 2010, vol. 158, p. 401.

    Article  CAS  Google Scholar 

  14. Du, X., Zhang, D., Gao, R., Huang, L., Shi, L., and Zhang, J., Chem. Commun., 2013, vol. 49, p. 6770.

    Article  CAS  Google Scholar 

  15. Yang, W., Liu, H., Li, Y., Zhang, J., Wu, H., and He, D., Catal. Today, 2016, vol. 259, p. 438.

    Article  CAS  Google Scholar 

  16. Park, J.C., Bang, J.U., Lee, L.G., Ko, C.H., and Song, H.J., J. Mater. Chem., 2010, vol. 20, p. 1239.

    Article  CAS  Google Scholar 

  17. Sakae, T., Yoshiki, O., Hiroshi, U., Hideki, M., and Masahiro, K., Appl. Catal. A-Gen., 2008, vol. 351, p. 189.

    Article  Google Scholar 

  18. Li, L., Yao, Y., Sun, B., Fei, Z., Xia, H., Zhao, J., Ji, W., and Au, C.T., Chem. Cat. Chem., 2013, vol. 5, p. 3781.

    CAS  Google Scholar 

  19. Li, L., He, S., Song, Y., Zhao, J., Ji, W., and Au, C.T., J. Catal., 2012, vol. 288, p. 54.

    Article  CAS  Google Scholar 

  20. Ding, C., Ai, G., Zhang, K., Yuan, Q., Han, Y., Ma, X., Wang, J., and Liu, S., Int. J. Hydrogen Energy, 2015, vol. 40, p. 6835.

    Article  CAS  Google Scholar 

  21. Junshe, Z. and Fanxing, L., Appl. Catal. B-Environ., 2015, vol. 176–177, p. 513.

    Google Scholar 

  22. Dae, H.K., Soong, Y.K., Sang, W.H., Youn, K.C., Myung, G.J., Eun, J.P., and Young, D.K., Appl. Catal. A-Gen., 2015, vol. 495, p. 184.

    Article  Google Scholar 

  23. Zhitao, W., Xin, S., Alfons, L., Kui, X., and Dehua, D., Catal. Today, 2013, vol. 216, p. 44.

    Article  Google Scholar 

  24. Lei, L., Yingying, Z., Qi, Z., Yuanhui, Z., Chongqi, C., Yusheng, S., Xingyi, L., and Kemei, W., Catal. Lett., 2009, vol. 130, p. 532.

    Article  Google Scholar 

  25. Wang, F., Wang, X., Liu, D., Zhen, J., Li, J., Wang, Y., and Zhang, H., ACS Appl. Mater. Inter., 2014, vol. 6, p. 22216.

    Article  CAS  Google Scholar 

  26. He, B., Zhao, Q., Zeng, Z., Wang, X., and Han, S., J. Mater. Sci., 2015, vol. 50, p. 6339.

    Article  CAS  Google Scholar 

  27. Shohei, T., Teruyuki, S., Hiromichi, K., Takahide, H., and Ryuji, K., Int. J. Hydrogen Energy, 2012, vol. 37, p. 5527.

    Article  Google Scholar 

  28. Ting, X., Xiaoyuan, Z., Jianping, Z., Liyi, S., and Dengsong, Z., Int. J. Hydrogen Energy, 2015, vol. 40, p. 9685.

    Article  Google Scholar 

  29. Chen, L., Lu, Y., Hong, Q., Lin, J., and Dautzenberg, F.M., Appl. Catal. A-Gen., 2005, vol. 292, p. 295.

    Article  CAS  Google Scholar 

  30. Tijs, K. and Rutger, A.S., J. Chem. Soc. Chem. Commun., 1991, p. 1281.

    Google Scholar 

  31. Makri, M.M., Vasiliades, M.A., Petallidou, K.C., and Efstathiou, A.M., Catal. Today, 2015, vol. 259, p. 150.

    Article  Google Scholar 

  32. Vasiliades, M.A., Makri, M.M., Djinovic, P., Erjavec, B., Pintar, A., and Efstathiou, A.M., Appl. Catal. B-Environ., 2016, vol. 197, p. 168.

    Article  CAS  Google Scholar 

  33. Francisco, P., Delia, G., and Nora, N.N., Int. J. Hydrogen Energy, 2009, vol. 34, p. 2260.

    Article  Google Scholar 

  34. Xianjun, D., Dengsong, Z., Liyi, S., Ruihua, G., and Jianping, Z., J. Phys. Chem. C, 2012, vol. 116, p. 10009.

    Article  Google Scholar 

  35. Xiangwen, L., Kebin, Z., Lei, W., Baoyi, W., and Yadong, L., J. Am. Chem. Soc., 2009, vol. 131, p. 3140.

    Article  Google Scholar 

  36. Pantaleo, G., Parola, V.L., Deganello, F., Singha, R.K., Bal, R., and Venezia, A.M., Appl. Catal. B-Environ., 2016, vol. 189, p. 233.

    Article  CAS  Google Scholar 

  37. Nora, A.M., Bibiana, P.B., Pierre, E., and Luis, E.C., Appl. Surf. Sci., 2006, vol. 253, p. 1489.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limei Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Liping, L., Zhang, L. et al. High Carbon-Resistance Ni@CeO2 Core–Shell Catalysts for Dry Reforming of Methane. Kinet Catal 58, 800–808 (2017). https://doi.org/10.1134/S0023158418010123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158418010123

Keywords

Navigation