Redox and Catalytic Properties of Copper Molybdates with Various Composition

Abstract

Using XRD and temperature-programmed reduction (TPR), phase and structural transformations of copper molybdates Cu3Mo2O9 and CuMoO4 were investigated in the course of their treatment with hydrogen, carbon monoxide or soot. The catalytic properties of copper molybdates Cu3Mo2O9 and CuMoO4 were studied in model oxidation reactions of carbon monoxide and soot. Phase and structural transformations of the molybdates, in particular formation of Cu4–xMo3O12 and Cu6Mo5O18 phases, was shown to have a significant impact on the formation of active state of the catalysts in the model reactions considered.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Chub, O.V., Mokrinskii, V.V., Reshetnikov, S.I., Yazykov, N.A., Dubinin, Yu.V., Simonov, A.D., and Yakovlev, V.A., Katal. Prom-sti, 2013, no. 5, p.54.

    Google Scholar 

  2. 2.

    Toniolo, F.S., Barbosa-Coutinho, E., Schwaab, M., Leocadio, I.C., Aderne, R.S., Schmal, M., and Pinto, J.C., Appl. Catal. A, 2008, vol. 342, no. 1, p.87.

    Article  CAS  Google Scholar 

  3. 3.

    Mei, C., Yuan, Y., Li, X., and Mei, D., Bull. Chem. React. Eng. Catal., 2016, vol. 11, no. 3, p.389.

    Article  CAS  Google Scholar 

  4. 4.

    Wang, J. Cheng, L., An, W., Xu, J., and Men, Y., Catal. Sci. Technol., 2016, vol. 6, no. 19, p. 7342.

    Article  CAS  Google Scholar 

  5. 5.

    Leocadio, I.C.L., Braun, S., and Schmal, M., J. Catal., 2004, vol. 223, no. 1, p.114.

    Article  CAS  Google Scholar 

  6. 6.

    Wang, C.H. and Weng, H.S., Ind. Eng. Chem. Res., 1997, vol. 36, no. 7, p. 2537.

    Article  CAS  Google Scholar 

  7. 7.

    Li, L., Mao, D., Yu, J., and Guo, X., J. Power Sources, 2015, vol. 279, p.394.

    Article  CAS  Google Scholar 

  8. 8.

    Pham, T.T.P., Nguyen, P.H.D., Vo, T.T., Luu, C.L., and Nguyen, H.H.P., Mater. Chem. Phys., 2016, vol. 184, p.5.

    Article  CAS  Google Scholar 

  9. 9.

    Rousseau, R., Dixon, D.A., Kay, B.D., and Dohnalek, Z., Chem. Soc. Rev., 2014, vol. 43, no. 22, p. 7664.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Gordeev, A.V., Zhukov, I.A., Gordeeva, O.S., Pavlitskii, N.A., Merk, A.A., Soltys, E.V., and Knyazev, A.S., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., Ser. Fizika, 2011, no. 12/2, p.15.

    Google Scholar 

  11. 11.

    Amakawa, K., Krohnert, J., Wrabetz, S., Frank, B., Hemmann, F., Jager, C., Schlogl, R., and Trunschke, A., ChemCatChem, 2015, vol. 7, no. 24, p. 4059.

    Article  CAS  Google Scholar 

  12. 12.

    US Patent no. 20160075617, 2016.

  13. 13.

    Boyadjian, C., van der Veer, B., Babich, I.V., Lefferts, L., and Seshan, K., Catal. Today, 2010, vol. 157, no. 1, p.345.

    Article  CAS  Google Scholar 

  14. 14.

    Al-Yassir, N. and Le Van Mao, R., Appl. Catal. A, 2006, vol. 305, no. 2, p.130.

    Article  CAS  Google Scholar 

  15. 15.

    Choudhary, V.R., Jha, R., Chaudhari, N.K., and Jana, P., Catal. Commun., 2007, vol. 8, no. 10, p. 1556.

    Article  CAS  Google Scholar 

  16. 16.

    Choudhary, V.R., Jha, R., and Jana, P., Catal. Commun., 2008, vol. 10, no. 2, p.205.

    Article  CAS  Google Scholar 

  17. 17.

    Wang, C.H., Lee, C.N., and Weng, H.S., Ind. Eng. Chem. Res., 1998, vol. 37, p. 1774.

    Article  CAS  Google Scholar 

  18. 18.

    Wang, C.H., Lin, S.S., Liou, S.B., and Weng, H.S., Chemosphere, 2002, vol. 49, no. 4, p.389.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Dong, L., Yao, X., and Chen, Y., Chin. J. Catal., 2013, vol. 34, no. 5, p.851.

    Article  CAS  Google Scholar 

  20. 20.

    Devulapelli, V.G. and Sahle-Demessie, E., Appl. Catal. A, 2008, vol. 348, p.86.

    Article  CAS  Google Scholar 

  21. 21.

    Chu, W.G., Wang, H.F., Guo, Y.J., Zhang, L.N., Han, Z.H., Li, Q.Q., and Fan, S.S., Inorg. Chem., 2009, vol. 48, no. 3, p. 1243.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Lebukhova, N.V., Karpovich, N.F., Makarevich, K.S., and Chigrin, P.G., Kataliz v Prom-sti, 2008, no. 6, p.35.

    Google Scholar 

  23. 23.

    Chigrin, P.G., Lebukhova, N.V., and Ustinov, A.Yu., Kinet. Katal., 2013, vol. 54, no. 1, p.79.

    Article  CAS  Google Scholar 

  24. 24.

    Hasan, M.A., Zaki, M.I., Kumari, K., and Pasupulety, L., Thermochim. Acta, 1998, vol. 320, no. 1, p.23.

    Article  CAS  Google Scholar 

  25. 25.

    Chigrin, P.G., Cand. Sci. (Chem.) Dissertation, Vladivostok: DVO RAN, 2012.

    Google Scholar 

  26. 26.

    Lebukhova, N.V. and Karpovich, N.F., Neorg. Mater., 2008, vol. 44, no. 8, p. 1003.

    Article  CAS  Google Scholar 

  27. 27.

    Bettahar, M.M., Costentin, G., Savary, L., and Lavalley, J.C., Appl. Catal. A, 1996, vol. 145, no. 1, p.1.

    Article  CAS  Google Scholar 

  28. 28.

    Habbr, J., Stoch, J., and Siltowski, T., Stud. Surf. Sci. Catal., 1981, vol. 7, p. 1402.

    Article  Google Scholar 

  29. 29.

    Moro-Oka, Y., Takita, Y., and Ozaki, A., J. Catal., 1971, vol. 23, no. 2, p.183.

    Article  CAS  Google Scholar 

  30. 30.

    Haber, J. and Wiltowski, T., Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1979, vol. 27, p.785.

    CAS  Google Scholar 

  31. 31.

    Maggiore, R., Galvagno, S., Bart, J.C.J., Giannetto, A., and Toscano, G., Z. Phys. Chem., 1982, vol. 132, p.85.

    Article  CAS  Google Scholar 

  32. 32.

    Wen, W., Jing, L., White, M.G., Marinkovic, N., Hanson, J.C., and Rodriguez, J.A., Catal. Lett., 2007, vol. 113, nos. 1–2, p.1.

    Article  CAS  Google Scholar 

  33. 33.

    Machej, T. and Ziolkowski, J., J. Solid State Chem., 1980, vol. 31, no. 2, p.145.

    Article  CAS  Google Scholar 

  34. 34.

    Koop, M. and Müller-Buschbaum, Hk., Z. Anorg. Allg. Chem., 1985, vol. 531, no. 12, p.140.

    Article  CAS  Google Scholar 

  35. 35.

    Benchikhi, M., El Ouatib, R., Guillemet-Fritsch, S., Chane-Ching, J.Y., Er-Rakho, L., and Durand, B., Ceram. Int., 2014, vol. 40, no. 4, p. 5371.

    Article  CAS  Google Scholar 

  36. 36.

    Asano, T., Nishimura, T., Ichimura, S., Inagaki, Y., Kawae, T., Fukui, T., and Gaulin, D.B., J. Phys. Soc. Jpn., 2011, vol. 80, no.9.

    Google Scholar 

  37. 37.

    Kihlborg, L., Norrestam, R., and Olivecrona, B., Acta Crystallogr., 1971, vol. 27, no. 11, p. 2066.

    Article  CAS  Google Scholar 

  38. 38.

    Vilminot, S., Andre, G., and Kurmoo, M., Inorg. Chem., 2009, vol. 48, no. 6, p. 2687.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Raw, A.D., Ibers, J.A., and Poeppelmeier, K.R., J. Solid State Chem., 2013, vol. 200, p.165.

    Article  CAS  Google Scholar 

  40. 40.

    Katz, L., Kasenally, A., and Kihlborg, L., Acta Crystallogr., 1971, vol. 27, no. 11, p. 2071.

    Article  CAS  Google Scholar 

  41. 41.

    Steiner, U., Reichelt, W., and Oppermann, H., Z. Anorg. Allg. Chem., 1996, vol. 622, no. 8, p. 1428.

    Article  CAS  Google Scholar 

  42. 42.

    Haber, J., Machej, T., Ungier, L., and Ziolkowski, J., J. Solid State Chem., 1978, vol. 25, no. 3, p.207.

    Article  CAS  Google Scholar 

  43. 43.

    Machej, T. and Ziolkowski, J., J. Solid State Chem., 1980, vol. 31, no. 2, p.135.

    Article  CAS  Google Scholar 

  44. 44.

    Schulmeyer, W.V. and Ortner, H.M., Int. J. Refract. Met. Hard Mater., 2002, vol. 20, no. 4, p.261.

    Article  CAS  Google Scholar 

  45. 45.

    Samsuri, A., Saharuddin, T.S.T., Salleh, F., Othaman, R., Hisham, M.W.M., and Yarmo, M.A., Malaysian J. Anal. Sci., 2016, vol. 20, no. 2, p.382.

    Article  Google Scholar 

  46. 46.

    Kirakosyan, H., Minasyan, T., Niazyan, O., Aydinyan, S., and Kharatyan, S., J. Therm. Anal. Calorim., 2016, vol. 123, no. 1, p.35.

    Article  CAS  Google Scholar 

  47. 47.

    Wang, X., Hanson, J.C., Frenkel, A.I., Kim, J.Y., and Rodriguez, J.A., J. Phys. Chem. B, vol. 108, no. 36, p. 13667.

  48. 48.

    Yang, B.X., Ye, L.P., Gu, H.J., Huang, J.H., Li, H.Y., and Luo, Y., J. Mol. Model, 2015, vol. 21, no. 8, p.195.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Svintsitskiy, D.A., Kardash, T.Y., Stonkus, O.A., Slavinskaya, E.M., Stadnichenko, A.I., Koscheev, S.V., and Boronin, A.I., J. Phys. Chem., 2013, vol. 117, no. 28, p. 14588.

    CAS  Google Scholar 

  50. 50.

    Dutov, V.V., Mamontov, G.V., Zaikovskii, V.I., and Vodyankina, O.V., Catal. Today, 2016, vol. 278, p.150.

    Article  CAS  Google Scholar 

  51. 51.

    Slavinskaya, E.M., Kardash, T.Yu., Stonkus, O.A., Gulyaev, R.V., Lapin, I.N., Svetlichnyi, V.A., and Boronin, A.I., Catal. Sci. Technol., 2016, vol. 6, p. 6650.

    Article  CAS  Google Scholar 

  52. 52.

    Huang, W., Sun, G., and Cao, T., Chem. Soc. Rev., 2017, vol. 46, p. 1977.

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Zhang, Q., Deng, W., and Wang, Y., Chem. Commun., 2011, vol. 47, p. 9275.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. V. Soltys.

Additional information

Original Russian Text © E.V. Soltys, Kh.Kh. Urazov, T.S. Kharlamova, O.V. Vodyankina, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 1, pp. 79–91.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soltys, E.V., Urazov, K.K., Kharlamova, T.S. et al. Redox and Catalytic Properties of Copper Molybdates with Various Composition. Kinet Catal 59, 58–69 (2018). https://doi.org/10.1134/S0023158418010111

Download citation

Keywords

  • copper molybdates
  • temperature-programmed reduction
  • phase and structural transformations
  • CO oxidation
  • soot oxidation